2021年江蘇省泰州市中考數(shù)學(xué)一模試卷_第1頁
2021年江蘇省泰州市中考數(shù)學(xué)一模試卷_第2頁
2021年江蘇省泰州市中考數(shù)學(xué)一模試卷_第3頁
2021年江蘇省泰州市中考數(shù)學(xué)一模試卷_第4頁
2021年江蘇省泰州市中考數(shù)學(xué)一模試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021年江蘇省泰州市中考數(shù)學(xué)一模試卷學(xué)校:___________姓名:___________班級:___________考號:___________題號一二三四總分得分注意:本試卷包含Ⅰ、Ⅱ兩卷。第Ⅰ卷為選擇題,所有答案必須用2B鉛筆涂在答題卡中相應(yīng)的位置。第Ⅱ卷為非選擇題,所有答案必須填在答題卷的相應(yīng)位置。答案寫在試卷上均無效,不予記分。一、選擇題1、-4的倒數(shù)是()A.4 B.-4C. D. 2、某市旅游節(jié)期間,共接待游客2420000人次,則2420000用科學(xué)記數(shù)法表示為()A.242×104 B.2.42×106 C.24.2×105 D.0.242×107 3、下列圖形中,是中心對稱圖形的是()A. B.C. D. 4、如圖是某個幾何體的三視圖,該幾何體是()A.圓錐 B.三棱錐 C.圓柱 D.三棱柱 5、為弘揚(yáng)水滸文化,某校舉辦水滸文化進(jìn)校園朗誦大賽,小麗同學(xué)根據(jù)比賽中七位評委所給的某位參賽選手的分?jǐn)?shù),制作了一個表格,如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是()A.中位數(shù) B.眾數(shù) C.平均數(shù) D.方差 6、如圖,C是以AB為直徑的半圓O上任意一點(diǎn),AB=3,則△ABC周長的最大值是()A.2+3B.3+3C.2+3D.9 二、填空題1、計算:a5÷a3=______.2、二次根式有意義,則x的取值范圍是______.3、分解因式:4m2-64=______.4、已知a+b=3,a-b=2,則a2-b2=______.5、“任意打開九年級數(shù)學(xué)課本,正好是第19頁”,這是______事件(選填“隨機(jī)”或“必然”或“不可能”).6、如圖,在△ABC中,∠ABC=90°,∠C=20°,DE是邊AC的垂直平分線,連結(jié)AE,則∠BAE等于______°.7、已知三角形的三邊分別為6cm,8cm,10cm,則這個三角形內(nèi)切圓的半徑是______.8、設(shè)m、n是方程x2+x-2020=0的兩個實(shí)數(shù)根,則m2+2m+n的值為______.9、已知一個圓錐形零件的母線長為13cm,底面半徑為5cm,則這個圓錐形的零件的側(cè)面積為______cm2.(結(jié)果用π表示).10、如圖,在Rt△ABC中,AC=BC,AB=10,以AB為斜邊向上作Rt△ABD,使∠ADB=90°.連接CD,若CD=7,則AD=______.三、解答題1、(1)計算:()-1-2sin60°+(2019-π)0;(2)解不等式組,并把解集在數(shù)軸上表示出來.______四、計算題1、先化簡,再求值:(),請從0、1、2、-1、-2五個數(shù)中選一個你喜歡的數(shù)代入求值.______2、某校為了解九年級學(xué)生藝術(shù)測試情況,以九年級(1)班學(xué)生的藝術(shù)測試成績?yōu)闃颖?,按A、B、C、D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)(1)此次抽樣共調(diào)查了多少名學(xué)生?(2)請求出樣本中D級的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計圖;(3)若該校九年級有1000名學(xué)生,請你用此樣本估計藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù).______3、游客到某景區(qū)旅游,經(jīng)過景區(qū)檢票口時,共有3個檢票通道A、B、C,游客可隨機(jī)選擇其中的一個通過.(1)一名游客經(jīng)過此檢票口時,選擇A通道通過的概率是______;(2)兩名游客經(jīng)過此檢票口時,求他們選擇不同通道通過的概率.(請用“畫樹狀圖”或“列表”等方式給出分析過程)______4、某市特產(chǎn)大閘蟹,2016年的銷售額是50億元,因優(yōu)質(zhì)生態(tài),銷售額是逐年增加,2018年的銷售額達(dá)98億元,若2017、2018年每年銷售額增加的百分率都相同.(1)求平均每年銷售額增加的百分率;(2)某市這3年大閘蟹的總銷售額是多少億元?______5、如圖,在矩形ABCD中,BE⊥AC,DF⊥AC,垂足分別為E、F,連接DE、BF.(1)求證:BE=DF;(2)判斷四邊形BEDF的形狀,并說明理由.______6、速滑運(yùn)動受到許多年輕人的喜愛,如圖,梯形BCDG是某速滑場館建造的速滑臺,已知CD∥EG,高DG為4米,且坡面BC的坡度為1:1.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為1:.(1)求新坡面AC的坡角;(2)原坡面底部BG的正前方10米(EB的長)處是護(hù)墻EF,為保證安全,體育管理部門規(guī)定,坡面底部至少距護(hù)墻7米.請問新的設(shè)計方案能否通過,試說明理由.(參考數(shù)據(jù):≈1.73)______7、如圖,一次函數(shù)y=kx+b(k≠0)和反比例函數(shù)y=(n≠0)分別交于點(diǎn)A(5,1),B(-1,a).(1)求反比例函數(shù)和一次函數(shù)的函數(shù)表達(dá)式;(2)連接AO、BO,求△AOB的面積;(3)根據(jù)圖象直接寫出不等式kx+b<的解集.______8、如圖1,已知AB是⊙O的直徑,弦CD⊥AB垂足為H,P是BA延長線上一點(diǎn),且CA平分∠PCH.(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;(2)若tan∠PCA=,AH=2,分別求出⊙O的半徑CO和PC的長;(3)如圖2,過點(diǎn)A作PC的平行線,分別交CD、⊙O于點(diǎn)N、M,連接DM,分別交AB、CO于點(diǎn)E、F,若tan∠PCA=,試探究DM與AC之間的數(shù)量關(guān)系.______9、如圖1,直線y=kx+n分別與y軸、x軸交于A、B兩點(diǎn),OA=1,OB=2,以AB為邊作正方形ABCD,拋物線y=+bx+c經(jīng)過點(diǎn)A、B.(1)分別求出直線與拋物線相應(yīng)的函數(shù)表達(dá)式;(2)試判斷正方形ABCD的頂點(diǎn)C是否在拋物線上,并說明理由;(3)若點(diǎn)P是直線AB下方的拋物線上一動點(diǎn)(P不與A、B重合).①連接AP、BP,求五邊形APBCD面積的最大值;②是否存在以AP為邊的正方形APEF,使其頂點(diǎn)E在正方形ABCD的邊BC上?若存在,請求出此時P的坐標(biāo);若不存在,請說明理由.______

2019年江蘇省泰州市中考數(shù)學(xué)一模試卷參考答案一、選擇題第1題參考答案:D解:-4的倒數(shù)是-.故選:D.根據(jù)倒數(shù)的定義:乘積是1的兩個數(shù),即可求解.本題主要考查了倒數(shù)的定義,正確理解定義是解題關(guān)鍵.---------------------------------------------------------------------第2題參考答案:B解:數(shù)據(jù)2420000用科學(xué)記數(shù)法表示為2.42×106.故選:B.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.---------------------------------------------------------------------第3題參考答案:C解:A、不是中心對稱圖形,故本選項(xiàng)不符合題意;B、不是中心對稱圖形,故本選項(xiàng)不符合題意;C、是中心對稱圖形,故本選項(xiàng)符合題意;D、不是中心對稱圖形,故本選項(xiàng)不符合題意;故選:C.根據(jù)中心對稱圖形的定義逐個判斷即可.本題考查了對中心對稱圖形的定義,能熟知中心對稱圖形的定義是解此題的關(guān)鍵.---------------------------------------------------------------------第4題參考答案:D解:根據(jù)主視圖和左視圖為矩形判斷出是柱體,根據(jù)俯視圖是三角形可判斷出這個幾何體應(yīng)該是三棱柱.故選:D.由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀.考查學(xué)生對三視圖掌握程度和靈活運(yùn)用能力,同時也體現(xiàn)了對空間想象能力方面的考查.主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.---------------------------------------------------------------------第5題參考答案:A解:如果去掉一個最高分和一個最低分,則表中數(shù)據(jù)一定不發(fā)生變化的是中位數(shù).故選:A.根據(jù)中位數(shù)的定義:位于中間位置或中間兩數(shù)的平均數(shù)可以得到去掉一個最高分和一個最低分不影響中位數(shù),中位數(shù)代表了這組數(shù)據(jù)值大小的“中點(diǎn)”,不易受極端值影響.此題主要考查了中位數(shù)、眾數(shù)、算術(shù)平均數(shù)、方差的含義和判斷,要熟練掌握,解答此題的關(guān)鍵是要明確:中位數(shù)代表了這組數(shù)據(jù)值大小的“中點(diǎn)”,不易受極端值影響.---------------------------------------------------------------------第6題參考答案:B解:∵AB為直徑,∴∠ACB=90°,∴AC2+BC2=AB2=32=9,AC+BC===,當(dāng)S△ABC最大時,AC+BC最大,∵S△ABC=AB?CD=,當(dāng)點(diǎn)C在中點(diǎn)時,CD=CO=AB=為最大,此時S△ABC最大,S△ABC===,即AC+BC最大==,△ABC周長的最大值=AC+BC+AB=+3.故選:B.當(dāng)點(diǎn)C在中點(diǎn)時,△ABC周長最大最大,然后根據(jù)AB=3計算即可.本題考查了周長的最大值,熟練掌握勾股定理與圓的性質(zhì)是解題的關(guān)鍵.二、填空題---------------------------------------------------------------------第1題參考答案:a2解:a5÷a3=a5-3=a2.故填a2.根據(jù)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減計算即可.本題考查同底數(shù)冪的除法法則.---------------------------------------------------------------------第2題參考答案:x≥5解:根據(jù)題意得:x-5≥0,解得x≥5.故答案為:x≥5.根據(jù)二次根式的意義,被開方數(shù)是非負(fù)數(shù)列出方程,解方程即可.本題考查的是二次根式有意義的條件,掌握二次根式的被開方數(shù)是非負(fù)數(shù)是解題的關(guān)鍵.---------------------------------------------------------------------第3題參考答案:4(m+4)(m-4)解:4m2-64,=4(m2-16),=4(m+4)(m-4).先提取公因式4,再對余下的多項(xiàng)式利用平方差公式繼續(xù)分解.本題考查用提公因式法和公式法進(jìn)行因式分解的能力,一個多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時因式分解要徹底,直到不能分解為止.---------------------------------------------------------------------第4題參考答案:6解:a2-b2=(a+b)(a-b)=3×2=6;故答案是:6.根據(jù)a2-b2=(a+b)(a-b),然后代值計算即可.本題考查了平方差公式.平方差公式為(a+b)(a-b)=a2-b2.本題是一道較簡單的題目.---------------------------------------------------------------------第5題參考答案:隨機(jī)解:“任意打開九年級數(shù)學(xué)課本,正好是第19頁”是隨機(jī)事件,故答案為:隨機(jī).根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.本題考查的是必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.---------------------------------------------------------------------第6題參考答案:50解:∵在△ABC中,∠ABC=90°,∠C=20°,∴∠BAC=180°-∠B-∠C=70°,∵DE是邊AC的垂直平分線,∠C=20°,∴CE=AE,∴∠EAC=∠C=20°,∴∠BAE=∠BAC-∠EAC=70°-20°=50°,故答案為:50.根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)線段垂直平分線的性質(zhì)求出CE=AE,求出∠EAC=∠C=20°,即可得出答案.本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,等腰三角形的性質(zhì)等知識點(diǎn),能求出CE=AE是解此題的關(guān)鍵.---------------------------------------------------------------------第7題參考答案:2cm解:連接IA、IB、IC,設(shè)△ABC的內(nèi)切圓的半徑為r,∵AC2+BC2=36+64=100,AB2=100,∴AC2+BC2=AB2,∴△ABC為直角三角形,則×AC×BC=×AC×r+×BC×r+×AB×r,即×6×8=×r×(6+8+10),解得,r=2,故答案為:2cm.連接IA、IB、IC,設(shè)△ABC的內(nèi)切圓的半徑為r,根據(jù)勾股定理的逆定理得到△ABC為直角三角形,根據(jù)三角形的面積公式計算即可.本題考查的是三角形的內(nèi)切圓與內(nèi)心,掌握三角形的面積公式,切線的性質(zhì)是解題的關(guān)鍵.---------------------------------------------------------------------第8題參考答案:2019解:∵m、n是方程x2+x-20200的兩個實(shí)數(shù)根,∴m+n=-1,并且m2+m-2020=0,∴m2+m=2020,∴m2+2m+n=m2+m+m+n=2020-1=2019.故答案為:2019由于m、n是方程x2+x-2020=0的兩個實(shí)數(shù)根,根據(jù)根與系數(shù)的關(guān)系可以得到m+n=-1,并且m2+m-2020=0,然后把m2+2m+n可以變?yōu)閙2+m+m+n,把前面的值代入即可求出結(jié)果此題主要考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.---------------------------------------------------------------------第9題參考答案:65π解:圓錐的底面周長=2π×5=10π,圓錐形的零件的側(cè)面積=×10π×13=65π,故答案為:65π.根據(jù)扇形弧長公式計算,得到答案.本題考查的是圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.---------------------------------------------------------------------第10題參考答案:6或8解:如圖,∵∠ACB=∠ADB=90°,∴A,C,B,D四點(diǎn)共圓,又∵△ABD是等腰直角三角形,∴AD=BD,∴=,∴∠ADC=∠BDC=45°,作AE⊥CD于E,∴△AED是等腰直角三角形,設(shè)AE=DE=x,則AD=x,∵CD=7,∴CE=7-x,∵AB=10,∴AC=AB=5,在Rt△AEC中,AC2=AE2+EC2,∴(5)2=x2+(7-x)2解得x=4或3,∴AD=x=8或6,故答案為6或8.首先證明A,C,B,D四點(diǎn)共圓,再根據(jù)AC=BC,即可得出∠ADC=∠BDC=45°,作AE⊥CD于E,則△AED是等腰直角三角形,設(shè)AE=DE=x,則AD=x,在直角三角形ACE中,根據(jù)勾股定理即可求得.本題主要考查了等腰直角三角形的性質(zhì),圓周角定理以及勾股定理的綜合應(yīng)用,解決問題的關(guān)鍵是判定四點(diǎn)共圓,作輔助線構(gòu)造等腰直角三角形,運(yùn)用勾股定理進(jìn)行計算.三、解答題---------------------------------------------------------------------第1題參考答案:解:(1)原式=2+3-2×+1=3+2;(2)∵解不等式①得:x>1;解不等式②得:x<3;∴不等式組的解集為:1<x<3,用數(shù)軸上表示為:.(1)根據(jù)負(fù)整數(shù)指數(shù)冪,算術(shù)平方根,特殊角的三角函數(shù)值,零指數(shù)冪分別求出每一部分的值,再計算加減即可;(2)先求出不等式組的解集,再在數(shù)軸上表示出來即可.本題考查了負(fù)整數(shù)指數(shù)冪,算術(shù)平方根,特殊角的三角函數(shù)值,零指數(shù)冪,解一元一次不等式組和在數(shù)軸上表示不等式組的解集等知識點(diǎn),能求出每一部分的值是解(1)的關(guān)鍵,能求出不等式組的解集是解(2)的關(guān)鍵.四、計算題---------------------------------------------------------------------第1題參考答案:解:原式=<->÷=×=a-1,當(dāng)a=-1時,原式=-2.先根據(jù)分式的混合運(yùn)算順序和運(yùn)算法則化簡原式,再選擇使分式有意義的a的值代入計算可得.本題主要考查分式的化簡求值,解題的關(guān)鍵是熟練掌握分式的混合運(yùn)算順序和運(yùn)算法則及分式有意義的條件.---------------------------------------------------------------------第2題參考答案:解:(1)10÷20%=50(名),即此次抽樣共調(diào)查了50名學(xué)生;(2)樣本中D等級的人數(shù)是:50-10-23-12=5(名)補(bǔ)全的條形統(tǒng)計圖如右圖所示;(3)根據(jù)題意得:1000×=660(人),答:估計藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù)約為660人.(1)根據(jù)A級的學(xué)生數(shù)和所占的百分比可以求得本次抽樣調(diào)查的學(xué)生數(shù);(2)根據(jù)(1)中的結(jié)果和條形統(tǒng)計圖中的數(shù)據(jù)可以求得D級的學(xué)生數(shù),從而可以將條形統(tǒng)計圖補(bǔ)充完整;(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以得到該校九年級藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù).本題考查扇形統(tǒng)計圖、條形統(tǒng)計圖、用樣本估計總體,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.---------------------------------------------------------------------第3題參考答案:解:(1)一名游客經(jīng)過此檢票口時,選擇A通道通過的概率=;故答案為;(2)列表如下:ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,A)共有9種等可能結(jié)果,其中通道不同的結(jié)果為6種,所以他們選擇不同通道通過的概率P==.(1)直接利用概率公式求解;(2)通過列表展示所有9種等可能結(jié)果,再找出通道不同的結(jié)果數(shù),然后根據(jù)概率公式求解.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.---------------------------------------------------------------------第4題參考答案:解:(1)設(shè)平均每年增加的百分率為x,根據(jù)題意得:50(1+x)2=98,解得:x1=0.4,x2=-2.4(不符合題意,舍去),答:平均每年銷售額增加的百分率為40%.(2)2017年的銷售額是:50(1+0.4)=70.所以3年總銷售額為:50+70+98=218(億元).答:某市這3年大閘蟹的總銷售額是218億元.(1)增長率問題,一般用增長后的量=增長前的量×(1+增長率),參照本題,如果設(shè)平均增長率為x,根據(jù)“2018年的銷售額達(dá)98億元”,即可得出方程.(2)利用(1)中求得的增長率得到:2017年的銷售額是:50(1+0.4)=70,所以3年總銷售額為:50+70+98=218.本題考查一元二次方程的應(yīng)用.關(guān)于平均增長率問題,可設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.---------------------------------------------------------------------第5題參考答案:(1)證明:∵矩形ABCD,∴AB∥CD,AB=CD,∴∠BAE=∠DCF,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,∴△ABE≌△CDF(AAS),∴BE=DF.(2)四邊形BEDF是平行四邊形.∵BE⊥AC,DF⊥AC,∴BE∥DF,又∵BE=DF,∴四邊形BEDF是平行四邊形.(1)根據(jù)平行四邊形的性質(zhì)得出BC=DA,結(jié)合AD∥BC,從而可得,∠ACB=∠DAC,根據(jù)AAS證出△ABE≌△CDF,從而得出BE=DF.(2)證得BE∥DF且BE=DF即可證得四邊形BEDF是平行四邊形.本題考查了全等三角形的判定與性質(zhì),平行四邊形的判定,熟練掌握三角形全等的判定方法并準(zhǔn)確識圖是解題的關(guān)鍵.---------------------------------------------------------------------第6題參考答案:解:(1)如圖,過點(diǎn)C作CH⊥BG,垂足為H,則CH=DG=4,∵新坡面AC的坡度為1:,∴tan∠CAH==,∴∠CAH=30°,即新坡面AC的坡角為30°;(2)新的設(shè)計方案能通過,∵坡面BC的坡度為1:1,∴BH=CH=4,∵tan∠CAH=,∴AH=CH=4∴AB=AH-BH=4-4,∴AE=EB-AB=10-(4-4)=14-4≈7.08>7,∴新的設(shè)計方案能通過.(1)過點(diǎn)C作CH⊥BG,根據(jù)坡度的概念、正確的定義求出新坡面AC的坡角;(2)根據(jù)坡度的定義分別求出AH、BH,求出EA,根據(jù)題意進(jìn)行比較,得到答案.本題考查的是解直角三角形的應(yīng)用-坡度坡角問題,掌握坡度坡角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.---------------------------------------------------------------------第7題參考答案:解:(1)∵點(diǎn)A(5,1)與點(diǎn)B(-1,a)在反比例函數(shù)y=(n≠0)圖象上,∴n=5×1=5,即反比例函數(shù)的解析式為y=.當(dāng)x=-1時,y=-5,即B(-1,-5),∵點(diǎn)A(5,1)與點(diǎn)B(-1,-5)在一次函數(shù)y=kx+b(k≠0)圖象上,∴,解得:,∴一次函數(shù)解析式為y=x-4;(2)對于y=x-4,當(dāng)y=0時,x=4,∴C(4,0),∴S△AOB=S△AOC+S△BOC=×4×1+×4×5=12;(3)由圖象可得,當(dāng)x<-1或0<x<5時,kx+b<.(1)利用待定系數(shù)法,即可得到反比例函數(shù)的解析式,把點(diǎn)A(5,1)與點(diǎn)B(-1,-5)代入一次函數(shù)y=kx+b,即可得到一次函數(shù)解析式為y=x-4;(2)根據(jù)三角形的面積公式即可得到結(jié)論;(3)由圖象即可得kx+b<的x的取值范圍.本題考查的是反比例函數(shù)與一次函數(shù)的交點(diǎn)問題及三角形的面積公式,熟知坐標(biāo)軸上點(diǎn)的坐標(biāo)特點(diǎn)是解答此題的關(guān)鍵.---------------------------------------------------------------------第8題參考答案:解:(1)直線PC與⊙O相切.理由如下:∵CA平分∠PCH,∴∠PCA=∠HCA,∵OA=OC,∴∠OAC=∠OCA,∵CD⊥AB,∴∠CAH+∠HCA=90°,∴∠OCA+∠PCA=90°,即PC⊥OC,∴PC與⊙O相切;(2)設(shè)⊙O的半徑為r,∵∠PCA=∠HCA,∴tan∠HCA=tan∠PCA=,∴=,∵AH=2,∴CH=4,∵在Rt△OCH中,OH2+CH2=OC2,即(r-2)2+42=r2,解得r=5,即⊙O的半徑CO=5,∵tan∠HOC==,∴tan∠POC==,即=,解得,PC=;(3)MD=AC,理由如下:連接CM,∵AM∥PC,∴∠CAM=∠PCA=∠ACH,∴AN=CN,∵tan∠PCA=,∴tan∠HCA=tan∠PCA=,設(shè)AH=k,則CH=2k,AN=CN=x,在Rt△ANH中,AH2+NH2=AN2,即k2+(2k-x)2=x2,解得,x=k,即AN=k,在Rt△ACH中,AH=k,CH=2k,∴AC=k,∵CD⊥AB,∴=,∴∠CMA=∠ACD,又∵∠CAN=∠CAM,∴△ACN∽△AMC,∴=,即AC2=AN?AM,∴(k)2=k?AM,解得,AM=4k,∴MN=4k-k=k,∵∠AMD=∠ACD=∠CAM,∠ANC=∠MND,∴△ACN∽△MDN,∴==,∴MD=AC.(1)根據(jù)角平分線的定義得到∠PCA=∠HCA,得到∠OCA+∠PCA=90°,根據(jù)切

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論