




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年廣東省茂名市重點中學高三信息化試點班入學測試數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)滿足,復數(shù)的共軛復數(shù)是,則()A.1 B.0 C. D.2.已知正項數(shù)列滿足:,設,當最小時,的值為()A. B. C. D.3.若樣本的平均數(shù)是10,方差為2,則對于樣本,下列結論正確的是()A.平均數(shù)為20,方差為4 B.平均數(shù)為11,方差為4C.平均數(shù)為21,方差為8 D.平均數(shù)為20,方差為84.()A. B. C. D.5.下列結論中正確的個數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.06.復數(shù),是虛數(shù)單位,則下列結論正確的是A. B.的共軛復數(shù)為C.的實部與虛部之和為1 D.在復平面內的對應點位于第一象限7.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題9.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.1210.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.11.在中,,,,為的外心,若,,,則()A. B. C. D.12.曲線在點處的切線方程為,則()A. B. C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中常數(shù)項是___________.14.雙曲線的焦點坐標是_______________,漸近線方程是_______________.15.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.16.已知一組數(shù)據(jù),1,0,,的方差為10,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+18.(12分)已知函數(shù),,設.(1)當時,求函數(shù)的單調區(qū)間;(2)設方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導函數(shù))19.(12分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調遞減區(qū)間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.20.(12分)在直角坐標系中,直線的參數(shù)方程為.(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程及的直角坐標方程;(2)求曲線上的點到距離的取值范圍.21.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.22.(10分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)復數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數(shù)代數(shù)形式的運算法則,考查共軛復數(shù)的概念,屬于基礎題.2、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.3、D【解析】
由兩組數(shù)據(jù)間的關系,可判斷二者平均數(shù)的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數(shù)是10,方差為2,所以樣本的平均數(shù)為,方差為.故選:D.【點睛】樣本的平均數(shù)是,方差為,則的平均數(shù)為,方差為.4、A【解析】
分子分母同乘,即根據(jù)復數(shù)的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復數(shù)的除法運算,屬于基礎題.5、B【解析】
根據(jù)等差數(shù)列的定義,線面關系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項公式為,可得為一次項系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數(shù)在區(qū)間上單調遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當且僅當時取等號,故④正確;綜上可得正確的有①④共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質,考查運算能力和推理能力,屬于中檔題.6、D【解析】
利用復數(shù)的四則運算,求得,在根據(jù)復數(shù)的模,復數(shù)與共軛復數(shù)的概念等即可得到結論.【詳解】由題意,則,的共軛復數(shù)為,復數(shù)的實部與虛部之和為,在復平面內對應點位于第一象限,故選D.【點睛】復數(shù)代數(shù)形式的加減乘除運算的法則是進行復數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化,其次要熟悉復數(shù)相關基本概念,如復數(shù)的實部為、虛部為、模為、對應點為、共軛為.7、A【解析】
根據(jù)函數(shù)圖像平移原則,即可容易求得結果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎題.8、B【解析】
由的單調性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于中檔題.9、A【解析】
由題意知成等差數(shù)列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質,考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數(shù)列性質,可使得計算量大大減少.10、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應為k>5?本題選擇C選項.點睛:使用循環(huán)結構尋數(shù)時,要明確數(shù)字的結構特征,決定循環(huán)的終止條件與數(shù)的結構特征的關系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.11、B【解析】
首先根據(jù)題中條件和三角形中幾何關系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質,正弦定理,平面向量分解定理,屬于一般題.12、B【解析】
求函數(shù)導數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數(shù)的幾何意義,切線方程,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.14、【解析】
通過雙曲線的標準方程,求解,,即可得到所求的結果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標是,漸近線方程為:.故答案為:;.【點睛】本題主要考查了雙曲線的簡單性質的應用,考查了運算能力,屬于容易題.15、【解析】
先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數(shù)有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是中檔題.16、7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當x∈(-∞,a]時,|x-2a|-|x-a|≤-a,[f(x)]max因為|y+2020|+|y-a|≥|a+2020|,所以當(y+2020)(y-a)≤0時,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結合a<0,所以a的取值范圍是[-1010,0).【點睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應用問題,以及絕對值三角不等式的應用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應用問題,關鍵是等價轉化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關系,求出參數(shù)范圍.18、(1)在上單調遞增,在上單調遞減.(2)見解析【解析】
(1)求出導函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計算,代入后可得結論.【詳解】解:,函數(shù)的定義域為,.(1)當時,,由得,由得,故函數(shù)在上單調遞增,在上單調遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..【點睛】本題考查用導數(shù)研究函數(shù)的單調性,考查導數(shù)的運算、方程根的知識.在可導函數(shù)中一般由確定增區(qū)間,由確定減區(qū)間.19、(Ⅰ)(Ⅱ)【解析】
(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數(shù)的單調性可得x滿足即所以f(x)在[0,π]上的單調遞減區(qū)間為(2)設△ABC的外接圓半徑為R,由題意,得化簡得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將①式代入②,得2(ab)2-3ab-9=0,解得ab=3或(舍去),故20、(1),.(2)【解析】
(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標方程為,利用極坐標化直角坐標的公式:,即可求得答案;(2)的標準方程為,圓心為,半徑為,根據(jù)點到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標方程為,利用極坐標化直角坐標的公式:的直角坐標方程為.(2)的標準方程為,圓心為,半徑為圓心到的距離為,點到的距離的取值范圍是.【點睛】本題解題關鍵是掌握極坐標化直角坐標的公式和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.21、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國音樂劇行業(yè)市場深度分析及發(fā)展前景與投資研究報告
- 2025-2030中國面盆龍頭行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 自然辨證法試題及答案
- 藥劑類考試理論解析試題及答案
- 售后面試題及答案
- 系統(tǒng)架構設計師考試技術選項試題及答案
- 社區(qū)托管面試題及答案
- 激光行業(yè)市場形勢分析試題及答案
- 公司對公賬戶合同標準文本
- 科學解題方法技巧稅務師試題及答案
- 2025年天津市南開區(qū)中考一模語文試題(含答案)
- 2025年磁粉探傷工職業(yè)技能鑒定理論考試題庫(濃縮500題)
- 婚姻保證忠誠協(xié)議書
- 新2024年-北京市房屋租賃合同自行成交版
- 有效工作時間管理
- 2025年安徽省銅陵市樅陽縣浮山中學高三下學期3月適應性考試歷史試題含解析
- 勞動合同法員工培訓課件
- 2025年上海市房屋租賃合同模板(標準版)
- 智慧城市中的公民參與-全面剖析
- 麻醉科急救處理職責
- 安全文明施工保證措施及承諾
評論
0/150
提交評論