版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
-.z.習(xí)題二1.求映射下圓周的像.解:設(shè)則因?yàn)?所以所以,所以即,表示橢圓.2.在映射下,以下z平面上的圖形映射為w平面上的什么圖形,設(shè)或.〔1〕;〔2〕;(3)*=a,y=b.(a,b為實(shí)數(shù))解:設(shè)所以(1)記,則映射成w平面虛軸上從O到4i的一段,即(2)記,則映成了w平面上扇形域,即(3)記,則將直線*=a映成了即是以原點(diǎn)為焦點(diǎn),口向左的拋物線將y=b映成了即是以原點(diǎn)為焦點(diǎn),口向右拋物線如下圖.3.求以下極限.(1);解:令,則.于是.(2);解:設(shè)z=*+yi,則有顯然當(dāng)取不同的值時f(z)的極限不同所以極限不存在.〔3〕;解:=.〔4〕.解:因?yàn)樗?4.討論以下函數(shù)的連續(xù)性:(1)解:因?yàn)?假設(shè)令y=k*,則,因?yàn)楫?dāng)k取不同值時,f(z)的取值不同,所以f(z)在z=0處極限不存在.從而f(z)在z=0處不連續(xù),除z=0外連續(xù).(2)解:因?yàn)?所以所以f(z)在整個z平面連續(xù).5.以下函數(shù)在何處求導(dǎo)?并求其導(dǎo)數(shù).(1)(n為正整數(shù));解:因?yàn)閚為正整數(shù),所以f(z)在整個z平面上可導(dǎo)..(2).解:因?yàn)閒(z)為有理函數(shù),所以f(z)在處不可導(dǎo).從而f(z)除外可導(dǎo).(3).解:f(z)除外處處可導(dǎo),且.(4).解:因?yàn)?所以f(z)除z=0外處處可導(dǎo),且.6.試判斷以下函數(shù)的可導(dǎo)性與解析性.(1);解:在全平面上可微.所以要使得,,只有當(dāng)z=0時,從而f(z)在z=0處可導(dǎo),在全平面上不解析.(2).解:在全平面上可微.只有當(dāng)z=0時,即(0,0)處有,.所以f(z)在z=0處可導(dǎo),在全平面上不解析.(3);解:在全平面上可微.所以只有當(dāng)時,才滿足C-R方程.從而f(z)在處可導(dǎo),在全平面不解析.(4).解:設(shè),則所以只有當(dāng)z=0時才滿足C-R方程.從而f(z)在z=0處可導(dǎo),處處不解析.7.證明區(qū)域D滿足以下條件之一的解析函數(shù)必為常數(shù).(1);證明:因?yàn)椋?.所以u,v為常數(shù),于是f(z)為常數(shù).(2)解析.證明:設(shè)在D解析,則而f(z)為解析函數(shù),所以所以即從而v為常數(shù),u為常數(shù),即f(z)為常數(shù).(3)Ref(z)=常數(shù).證明:因?yàn)镽ef(z)為常數(shù),即u=C1,因?yàn)閒(z)解析,C-R條件成立。故即u=C2從而f(z)為常數(shù).(4)Imf(z)=常數(shù).證明:與〔3〕類似,由v=C1得因?yàn)閒(z)解析,由C-R方程得,即u=C2所以f(z)為常數(shù).5.|f(z)|=常數(shù).證明:因?yàn)閨f(z)|=C,對C進(jìn)展討論.假設(shè)C=0,則u=0,v=0,f(z)=0為常數(shù).假設(shè)C0,則f(z)0,但,即u2+v2=C2則兩邊對*,y分別求偏導(dǎo)數(shù),有利用C-R條件,由于f(z)在D解析,有所以所以即u=C1,v=C2,于是f(z)為常數(shù).(6)argf(z)=常數(shù).證明:argf(z)=常數(shù),即,于是得C-R條件→解得,即u,v為常數(shù),于是f(z)為常數(shù).8.設(shè)f(z)=my3+n*2y+i(*3+l*y2)在z平面上解析,求m,n,l的值.解:因?yàn)閒(z)解析,從而滿足C-R條件.所以.9.試證以下函數(shù)在z平面上解析,并求其導(dǎo)數(shù).(1)f(z)=*3+3*2yi-3*y2-y3i證明:u(*,y)=*3-3*y2,v(*,y)=3*2y-y3在全平面可微,且所以f(z)在全平面上滿足C-R方程,處處可導(dǎo),處處解析..(2).證明:處處可微,且所以,所以f(z)處處可導(dǎo),處處解析.10.設(shè)求證:(1)f(z)在z=0處連續(xù). (2)f(z)在z=0處滿足柯西—黎曼方程. (3)f′(0)不存在.證明.(1)∵而∵∴∴同理∴∴f(z)在z=0處連續(xù).(2)考察極限當(dāng)z沿虛軸趨向于零時,z=iy,有.當(dāng)z沿實(shí)軸趨向于零時,z=*,有它們分別為∴∴滿足C-R條件.(3)當(dāng)z沿y=*趨向于零時,有∴不存在.即f(z)在z=0處不可導(dǎo).11.設(shè)區(qū)域D位于上半平面,D1是D關(guān)于*軸的對稱區(qū)域,假設(shè)f(z)在區(qū)域D解析,求證在區(qū)域D1解析.證明:設(shè)f(z)=u(*,y)+iv(*,y),因?yàn)閒(z)在區(qū)域D解析.所以u(*,y),v(*,y)在D可微且滿足C-R方程,即.,得故φ(*,y),ψ(*,y)在D1可微且滿足C-R條件從而在D1解析13.計算以下各值(1)e2+i=e2?ei=e2?(cos1+isin1)(2)(3)(4)14.設(shè)z沿通過原點(diǎn)的放射線趨于∞點(diǎn),試討論f(z)=z+ez的極限.解:令z=reiθ, 對于θ,z→∞時,r→∞. 故. 所以.15.計算以下各值.(1)(2)(3)ln(ei)=ln1+iarg(ei)=ln1+i=i(4)16.試討論函數(shù)f(z)=|z|+lnz的連續(xù)性與可導(dǎo)性.解:顯然g(z)=|z|在復(fù)平面上連續(xù),lnz除負(fù)實(shí)軸及原點(diǎn)外處處連續(xù).設(shè)z=*+iy,在復(fù)平面可微.故g(z)=|z|在復(fù)平面上處處不可導(dǎo).從而f(*)=|z|+lnz在復(fù)平面上處處不可導(dǎo).f(z)在復(fù)平面除原點(diǎn)及負(fù)實(shí)軸外處處連續(xù).17.計算以下各值.(1)(2)(3)18.計算以下各值(1)(2)(3)(4)(5)(6)19.求解以下方程(1)sinz=2.解:(2)解:即(3)解:即(4)解:.20.假設(shè)z=*+iy,求證(1)sinz=sin*chy+icos*?shy證明:(2)cosz=cos*?chy-isin*?shy證明:(3)|sinz|2=sin2*+sh2y證明:(4)|cosz|2=cos2*+sh2y證明:2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版教育貸款延期還款合同樣本與政策扶持力度3篇
- 小班食物安全策劃方案模板五篇
- 2024版廠房場地租賃合同標(biāo)準(zhǔn)范文
- 美術(shù)幼兒創(chuàng)意活動策劃方案五篇
- 2024指定供應(yīng)商采購與施工一體化協(xié)議
- 2024年項目投資意向金協(xié)議書
- 二零二五年度國際藝術(shù)品買賣合同主要條款與鑒定標(biāo)準(zhǔn)3篇
- 二零二五年度品牌整合傳播廣告制作合同范本3篇
- 2025湖北省安全員《B證》考試題庫
- 廚師培訓(xùn)課程
- 健身俱樂部入場須知
- 井下機(jī)電安裝安全教育培訓(xùn)試題及答案
- TZJXDC 002-2022 電動摩托車和電動輕便摩托車用閥控式鉛酸蓄電池
- GB/T 4744-2013紡織品防水性能的檢測和評價靜水壓法
- GB/T 337.1-2002工業(yè)硝酸濃硝酸
- 《解放戰(zhàn)爭》(共48張PPT)
- 放射工作人員法律法規(guī)及防護(hù)知識培訓(xùn)考核試題附答案
- 勞動仲裁追加申請申請書(標(biāo)準(zhǔn)版)
- 西方法律思想史 課件
- 各種綠色蔬菜收貨驗(yàn)收作業(yè)標(biāo)準(zhǔn)和蔬菜品質(zhì)標(biāo)準(zhǔn)課件
- 內(nèi)蒙古烏蘭察布市市藥品零售藥店企業(yè)藥房名單目錄
評論
0/150
提交評論