版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023屆河北省兩校高三二診測試(數(shù)學(xué)試題理)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.射線測厚技術(shù)原理公式為,其中分別為射線穿過被測物前后的強(qiáng)度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價(jià)層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價(jià)層厚度是指將已知射線強(qiáng)度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.2.若,則,,,的大小關(guān)系為()A. B.C. D.3.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.4.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.985.已知為銳角,且,則等于()A. B. C. D.6.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.87.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知函數(shù),對任意的,,當(dāng)時(shí),,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個(gè)對稱中心是9.已知函數(shù),其中,,其圖象關(guān)于直線對稱,對滿足的,,有,將函數(shù)的圖象向左平移個(gè)單位長度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.10.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個(gè)公共點(diǎn),且橢圓的焦距為2,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.11.在中,為中點(diǎn),且,若,則()A. B. C. D.12.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為拋物線的焦點(diǎn),為上互相不重合的三點(diǎn),且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.14.下表是關(guān)于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個(gè)人做進(jìn)一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.15.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.16.記為數(shù)列的前項(xiàng)和.若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m值.(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.18.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.19.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點(diǎn).求證:平面平面;是否存在滿足的點(diǎn),使得?若存在,求出的值;若不存在,請說明理由.20.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足,,,,恰為等比數(shù)列的前3項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項(xiàng)公式;若不存在,請說明理由.21.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.22.(10分)某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計(jì)圖如圖:(1)估計(jì)該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因?yàn)?所以,即.所以這種射線的吸收系數(shù)為.故選:C【點(diǎn)睛】本題主要考查知識的遷移能力,把數(shù)學(xué)知識與物理知識相融合;重點(diǎn)考查指數(shù)型函數(shù),利用指數(shù)的相關(guān)性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.2、D【解析】因?yàn)椋?,因?yàn)椋?,所?.綜上;故選D.3、D【解析】
先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)?,?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.4、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.5、C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)?,,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.6、B【解析】
建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B【點(diǎn)睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.7、C【解析】
討論當(dāng)時(shí),是否恒成立;討論當(dāng)恒成立時(shí),是否成立,即可選出正確答案.【詳解】解:當(dāng)時(shí),,由開口向上,則恒成立;當(dāng)恒成立時(shí),若,則不恒成立,不符合題意,若時(shí),要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點(diǎn)睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個(gè)命題的關(guān)系時(shí),一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.8、D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯(cuò)誤;對于B,由,解得,故B錯(cuò)誤;對于C,當(dāng)時(shí),,故C錯(cuò)誤;對于D,由,故D正確.故選:D【點(diǎn)睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.9、B【解析】
根據(jù)已知得到函數(shù)兩個(gè)對稱軸的距離也即是半周期,由此求得的值,結(jié)合其對稱軸,求得的值,進(jìn)而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關(guān)于直線對稱,對滿足的,,有,∴.再根據(jù)其圖像關(guān)于直線對稱,可得,.∴,∴.將函數(shù)的圖像向左平移個(gè)單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,,故選B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.10、B【解析】
設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進(jìn)而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標(biāo)準(zhǔn)方程為.故選:B.【點(diǎn)睛】本題考查橢圓和雙曲線的標(biāo)準(zhǔn)方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點(diǎn)位置,屬于中檔題.11、B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.12、A【解析】
由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因?yàn)椋缘慕饧癁?,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計(jì)算求解能力與推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】
設(shè)出三點(diǎn)的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因?yàn)?、、成等差?shù)列,所以有,所以,因?yàn)榫€段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.14、32【解析】
由已知可得抽取的比例,計(jì)算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點(diǎn)睛】本題考查分層抽樣中求樣本容量,屬于基礎(chǔ)題.15、【解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.16、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,在直角坐標(biāo)條件下求出曲線的圓心坐標(biāo)和半徑,將直線的參數(shù)方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數(shù)方程形式,代入由三角公式化簡可求其取值范圍.【詳解】(1)曲線C的極坐標(biāo)方程是化為直角坐標(biāo)方程為:直線的直角坐標(biāo)方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為:或(2)曲線的方程可化為,其參數(shù)方程為:為曲線上任意一點(diǎn),的取值范圍是18、(1)(2)證明見解析【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因?yàn)?,,所以要證,只需證,即證,因?yàn)椋灾灰C,即證,即證,因?yàn)?,所以只需證,因?yàn)椋猿闪?,所?【點(diǎn)睛】本小題主要考查絕對值不等式的解法,考查分析法證明不等式,考查基本不等式的運(yùn)用,屬于中檔題.19、證明見解析;2.【解析】
利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因?yàn)槭钦切?,為線段的中點(diǎn),所以.因?yàn)槭橇庑?,所以.因?yàn)椋允钦切?,所以,而,所以平面.又,所以平面.因?yàn)槠矫?,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿足的點(diǎn),使得,此時(shí).【點(diǎn)睛】本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎(chǔ)知識;考查空間想象能力、運(yùn)算求解能力、推理論證能力和創(chuàng)新意識;考查化歸與轉(zhuǎn)化、函數(shù)與方程等數(shù)學(xué)思想,屬于難題.20、(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個(gè)等式相減,化簡得,公差為2,因?yàn)?,,為等比?shù)列,所以,化簡計(jì)算得,,從而得到數(shù)列的通項(xiàng)公式,再計(jì)算出,,,從而可求出數(shù)列的通項(xiàng)公式;(2)令,化簡計(jì)算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個(gè)可看成一個(gè)數(shù)列的前項(xiàng)和,再寫出其前()項(xiàng)和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當(dāng)時(shí),,即當(dāng)時(shí),①②①-②得,整理得,又因?yàn)楦黜?xiàng)均為正數(shù)的數(shù)列.故是從第二項(xiàng)的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項(xiàng),故,解得.又,故,因?yàn)橐渤闪ⅲ适且詾槭醉?xiàng),2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項(xiàng),故是以為首項(xiàng),公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因?yàn)榈淖钚≈禐椋?,所以的最大整?shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點(diǎn)睛】此題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,最值,恒成立問題,考查了推理能力與計(jì)算能力,屬于中檔題.21、(1)詳見解析(2)【解析】
(1)如圖,作,交于,連接.因?yàn)椋允堑娜确贮c(diǎn),可得.因?yàn)?,,,所以,因?yàn)?,所以,因?yàn)?,所以,所以,因?yàn)椋?,所以,因?yàn)槠矫妫矫?,所以平?又,平面,平面,所以平面.因?yàn)?,、平面,所以平面平面,所以平?(2)因?yàn)?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024離婚協(xié)議要點(diǎn)及范本
- 2024石材礦山荒料資源整合與開發(fā)合同3篇
- 2025年度鴨苗繁育基地建設(shè)與運(yùn)營管理合同3篇
- 2025年度船舶船員體檢與健康保險(xiǎn)合同3篇
- 二零二五年搬家物流運(yùn)輸合同樣本6篇
- 2024版建設(shè)工程施工合同ef0203
- 二零二五年度房地產(chǎn)項(xiàng)目土地置換合同3篇
- 2025年草原生態(tài)保護(hù)與草原旅游開發(fā)一體化合同3篇
- 2024版深圳股權(quán)轉(zhuǎn)讓合同協(xié)議書范本
- 2025年度高空樓頂廣告設(shè)計(jì)與施工一體化服務(wù)合同4篇
- 深圳2024-2025學(xué)年度四年級第一學(xué)期期末數(shù)學(xué)試題
- 中考語文復(fù)習(xí)說話要得體
- 《工商業(yè)儲能柜技術(shù)規(guī)范》
- 華中師范大學(xué)教育技術(shù)學(xué)碩士研究生培養(yǎng)方案
- 醫(yī)院醫(yī)學(xué)倫理委員會(huì)章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 風(fēng)浪流耦合作用下錨泊式海上試驗(yàn)平臺的水動(dòng)力特性試驗(yàn)
- 高考英語語法專練定語從句含答案
- 有機(jī)農(nóng)業(yè)種植技術(shù)操作手冊
- 【教案】Unit+5+Fun+Clubs+大單元整體教學(xué)設(shè)計(jì)人教版(2024)七年級英語上冊
- 2020年的中國海外工程示范營地申報(bào)材料及評分標(biāo)準(zhǔn)
評論
0/150
提交評論