版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
InstrumentalAnalysisShanghaiUniversityContentsIntroductionIntroductiontoOpticalMethods
AtomicEmissionSpectroscopyAtomicAbsorptionSpectroscopy
TheAbsorptionofRadiation:UltravioletandVisible
MolecularLuminescence:FluorometryandphosphorimetryTheAbsorptionofRadiation:Infrared
IntroductiontoElectrochemicalMethods
Potentiometry
PolarographyIntroductiontoInterphaseSeparations
GasChromatographyLiquidChromatography
Chapter1
Introduction
DefinitionofInstrumentalAnalysisClassificationFunctionImportantConsiderations
1.1.The
DefinitionofInstrumental
Analysis
Thescienceandart
ofdeterminingthecompositionofmaterials
with
theinstrumentalmethods
basedon
aphysicalpropertycharacteristic
ofaparticularelementorcompound
ChemicalInformation
observableSignalbydeterminationof
physicalproperties1.2.
PhysicalPropertiesUsefulinInstrumentalAnalysis1.
InteractionofRadiantEnergywithMatter2.
ElectricalorElectrochemicalProperties3.
InterphaseSeparation4.Other
Properties
MechanicalProperties
ThermalProperties
NuclearProperties
ExtensiveProperties1.3.
ClassificationofMainInstrumentalMethods
1.
OpticalMethods
Atomic:
AbsorptionSpectroscopy, Emission,Spectroscopy FluorescenceSpectroscopy
Molecular:
UV-Vis.Spectrophotometry IRSpectroscopy2.
ElectrochemicalMethods Potentiometry Polarography Voltammetry3.
Chromatography GasChromatography LiquidChromatography1.4
BasicFunctionofInstrumentationSignalGeneratorsInputTransducersSignalTransformationModulesOutputTransducers1.5
MajorAreasofanInstrumentalMethodHowthemethod“works”AdvantagesandlimitationsofthemethodIllustrativeinstrumentationApplicationsProblemsBibliographyChapter2
IntroductiontoOpticalMethods
TheNatureofRadiantEnergySpectralRegionsInteractionofRadiationwithAtomandMoleculePracticalSourcesofRadiationSpectrographandMonochromator2.1
TheNatureofRadiantEnergyTheDualityofLight:WavepropertiesRefractionDiffractionReflectionScatteringVfrequency,Cvelocityoflight,wavelength,vwavenumber__(2.1)-Whereh
isPlanck’sconstant,h=6.6256×10-34J.s2.Particularproper(theEnergyofaphoton)(2.2)2.2
SpectralRegions2.3a
InteractionofRadiationwithAtoms
Emission
Atom(highexcitedstate)→Atom(lowerexcitedstate)+h
Absorption
Atom(groundstate)+h→Atom(highexcitedstate)Fluorescence
Atom(groundstate)+h→Atom(highexcitedstate)
Atom(lowerexcitedstate)+hF
2.3b
InteractionofRadiationwithMoleculesE(molecule)=Ee+Ev+ErE=E2—E1=hvAbsorptionM+hv→M*FluorescenceM+hv→M*→M+hv`2.4
Instrumentation
1.TheComponentsofaSpectrometer
⑴LightSource⑵Samplecell⑶PolychromatororMonochromator⑷Detector2.Atomicspectrometrysystem3.Dispersion
⑴ByaPrism
⑵ByaGratingGratingEquation
Where::blazeangle,nr:numberofgrooves/mm,:wavelength,m:gratingorder:incidentangle,:diffractedangle,Forablazedreflectiongrating(echelette)(2.3)(2.4)lineardispersionReciprocallineardispersionDrAngledispersionofagrating(2.5)(2.6)(2.7)ResolvingPowerBlazingrangeTheminimumpositioncorrespondstoanoptimumslitwidthWhere:wisdiameterofthelens,fisthefocallength.(2.8)(2.9)(2.10)4.ATypicalMonochromatorChapter3
AtomicEmissionSpectroscopy3.1.FundamentalsofAES
3.2.Instrumentation
3.3.AnalyticalMethodsofAES3.4.ControlofAnalyticalInterferences
3.1.FundamentalsofAES
AtomicEmissionProcesses3.2.Instrumentation1.Lightsource2.Spectrometer3.Detector4.ReadoutLightSourceTypeEva.Temp.Exci.Temp.stabilityApplication.DCArchighlowpoorQualitativeAnalysisACArcmidmidgoodQualitativeAnalysisSparklowhighestgoodQuantitativeAnalysisICPhighesthighbestQuantitativeAnalysisLightSourceProgressesSpectrometer⑴MonochromaterOptical-directReadSpectrometor⑵PolychromaterOptical-directReadSpectrometor3.Detector⑴Spectrograph⑵PhotomultiplierTube⑶Segmented-arrayCharge-CoupledDetector(SCD)ICP-AESInstrumentationSystemTwo-dimensionalarrayproducedbytheechellemountFig3-16SchemeofSCDDetector3.3AnalyticalMethodsofAES1.QualitativeAnalysis
⑴StandardIronSpectraComparison ⑵IndicateElementSpectraComparison ⑶DeterminationofLineWavelength
2.QuantitativeAnalysisQuantitativeFormula⑴theoreticalFormulaofAES(3.1)(3.2)(3.3)⑵LomakinFormula
⑶InternalStandardMethods
⑷StandardCalibrationMethods
(3.4)(3.5)(3.6)3.4.AnalyticalInterferences
SpectrumInterferenceBackgroundInterferenceMatrixInterference1.SpectrumInterference2.BackgroundInterference3.MatrixInterference3.5SensitivityandDetectionLimit1.Detectionlimit
(3.7)Chapter4
AtomicAbsorptionSpectroscopy4.1.TheoreticalConcepts4.2.AtomicAbsorption Instrumentation
4.3.GraphiteFurnaceAtomic Absorption
4.4.ControlofAnalytical Interferences
4.1.TheoreticalConceptsTheAtomicAbsorptionProcessTheoreticalConceptsQuantitativeAnalysisCharacteristicConcentrationDetectionLimits
TheAtomicAbsorptionProcessFig4-3GrotriandiagramsforNaFig4-2GrotriandiagramsforK2.TheoreticalConcepts
⑴IntegralFormulaofAAS
Fig4-4TypicalShapeofAAtomicAbsorptionlineIntegralAbsorptionFormula
ByatomictheoryByLineShapeFunction(theNaturedistribute)ThePeakAbsorptionCoefficientk0is:(4.1)(4.2)(4.3)⑵PeakAbsorptionTheory
byLambert-Beer’sLaw:(4.4)(4.5)(4.6)TheAbsorbanceis:Whenva>>ve,thenkv≈k0,(4.7)(4.8)(4.9)3.QuantitativeAnalysis(4.10)4.CharacteristicConcentration
The‘‘characteristicconcentration’’(sometimescalled‘‘sensitivity’’)isaconventionfordefiningthemagnitudeoftheabsorbancesignalwhichwillbeproducedbyagivenconcentrationofanalyte.Forflameatomicabsorption,thistermisexpressedastheconcentrationofanelementinmilligramsperliter(mg/L)requiredtoproducea1%absorption(0.0044absorbance)signal.(4.11)5.DetectionLimitHavingobtainedthedata,makethecalculationasfollows:Averagethetwoblankreadingstakenimmediatelybeforeandaftereachstandardandsubtractfromthestandardreading.2.Calculatethemeanandstandarddeviationforthesetofcorrectedhigh-standardreadings.Dothesameforthesetofcorrectedlowstandardreadings.3.Iftheratioofthemeansdoesnotcorrespondtotheratiooftheconcentrationpreparedtowithinstatisticalerror,rejectthedata.4.Ifthedatapasstheratio-of-the-meanstest,calculatethe concentrationdetectionlimitasfollows:(4.12)4.2.AtomicAbsorption
Instrumentation
1.PhotometersforAASANewTypePhotometerforAAS2.linesource(HollowCathodeLamp)Fig4-13HollowCathodeLampEmissionProcessFig4-143.AtomizerforAAS(Pre-MixBurnerSystem)
Fig4-19TreeTypeBurnerHeadfordifferentTypeFlame4.ControlofAnalyticalInterferencesIonizationInterferenceMatrixInterferenceChemicalInterferenceBackgroundInterferenceIonizationInterferenceMatrixInterferenceChemicalInterferenceTheMethodOfStandardAdditionsNo.SampleAddedmlStandardAddedmlConcentr.ofstandardmg/LLastConcentriationmg/L1Vx0CsVxVL2VsVx+CsVsVL32VsVx+2CsVsVL43VsVx+3CsVsVLBackgroundInterferenceAD2=Ab,
AHCL=Aa+AbAa=AHCL-AD2(4.13)(4.14)(4.15)4.3.GraphiteFurnaceAtomicAbsorptionGraphitefurnaceatomizercomponents
TheGraphiteFurnacePowerSupplyandProgrammer
QuantitativeanalysisGFAAS
EffectofMatrixonHeightandArea1.Graphitefurnaceatomizercomponents
TheGraphiteFurnaceAtomizerAbasicgraphitefurnaceatomizeriscomprisedofthefollowingcomponents:·graphitetube·electricalcontacts·enclosedwatercooledhousing·inertpurgegascontrolsTHGAgraphitetubeFig4-27TheGraphiteFurnacePowerSupplyandProgrammer
AGraphiteFurnaceTemperatureProgramDryingPyrolysisCoolDown(optional)AtomizationCleanOutCoolDownChapter5
UltravioletandVisibleSpectrophotometry5.1.ConceptsofUV-Vis.Spectrophotometry5.2.UV-Vis.Spectrophotometer5.3.AnalyticalMethods
5.1.
ConceptsofUV-Vis.Spectrophotometry1.MolecularabsorptionandFluorescence2.Lambert-Beer’sLaw
(1)TransmittanceT:(5.1)(2)Absorbance:
(3)Molarabsorptivity
When:theunitofbisincm,Cinmol/L,molarabsorptivity
is:B:transitionprobability,:effectiveareaofmolecular(5.2)(5.3)5.2.
UV-Vis.SpectrophotometerAASpectrophotometerDoublebean
UV-Vis.Spectrophotometer5.3.
AnalyticalMethods
1.QualitativeAnalysis
2.QuantitativeAnalysis
3.DualwavelengthSpectrophotometry
4.DifferentialSpectrophotometry
5.DerivativeSpectraQualitativeAnalysis
⑴OrganicCompound
Chromophore
max(nm)
(mol-1.cm-1)TransitionTypeR3C—N—2003000n→*R3C—S—2002000n→*—N=N—34010n→*—S—S—250-3301000n→*R2C=S500,24010,9000n→*R2C=O280,19020,2000n→*,n→*—COOR205,16550,4000n→*,→*⑵InorganicCompoundIonn3d,e
max(nm)Ionn3d,e
max(nm)Sc2+0------Zn2+10------Ti(H2O)63+1492.6Cu+10------VO2+1625Cu(H2O)62+9592,794Cr(H2O)63+2407,575Ni(H2O)62+8395,650,740V(H2O)62+3557Co(H2O)62+7516,541,625Cr(H2O)62+3709Fe(H2O)63+5411,540,794Mn(H2O)63+4476Mn(H2O)62+4402,435,5323.DoublewavelengthSpectrophotometryTwo-componentanalysiswithdoublewavelengthAC,520=AC,540AB+C,520=AB,520+AC,520AB+C,540=AB,540+AC,540A=AB+C,520-AB+C,540=AB,520-AB,5404.DifferentialSpectrophotometry(5.4)(5.5)⑴whenTS,1=0,TS,2=100%⑵whenTS,1=0,TS,2<100%⑶whenTS,1>0(5.6)(5.7)(5.8)5.DerivativeSpectra5.4
MolecularFluorescence
SpectrometerChapter6
ElectrochemicalAnalysisAnodereaction:
Red===Ox+ne
-Cathodereaction:
Ox+ne
-===
Red6.1IntroductionOxidation–reductionreactionCellreactionexpression
Anodesolution,(Ox)solution,(Red)Cathode(6r-1)(6r-2)Forexample:ZnZnSO4,(xMol)CuSO4,(yMol)CuAnode:ZnZn2++2e-Cathode:Cu2++2e-Cu(6r-3)(6r-4)2.Half-cellPotentialForhalf–cellreaction:
rAred+ne-
pAOxNernstequation:ForaCell:
Ecell=Ecathode-Eanode
If,Ecell>0:PrimaryCell
Ecell<0:ElectrolyicCell(6r-5)(6-1)(6-2)3.The
TypesofElectrodesAmetalinEquilibriumwithitsions
(ClassⅠelectrodes)Ag++e-Ag(6r-6)(6-3)Ametalinequilibriumwithasaturatedsolutionofaslightlysolublesalt
(ClassⅡelectrodes)AgAgClCl-,(
=1)AgCl(s)+e-Ag+Cl–ReferenceelectrodesSaturatedcalomelelectrode(SCE)HgHg2Cl2(s)Cl-,(sat’dKCL)Hg2Cl2(s)+2e-2Hg+2Cl–(sat’dKCL)(6r-7)(6r-8)AmetalinequilibriumwithtowslightlysolublesaltswithacommonAnion
(ClassⅢelectrodes)AgAg2S,CdSAg+,Cd2+,S2-,Ag2S(s)2Ag++S2-CdS(s)Cd2++S2-(6r-9)(6r-10)4.ThedepartureofpotentialLiquid-junctionpotential
HCl(0.1M)
KCl(saltbridge,xM)KCl(0.1M)Whenx>3.6Eljp<1mVPolarization
Efact
≠ENernst
andCsurf≠Cbolk
Over-voltagerealpotentialstartareaction>equilibriumpotentialOhmdrop
Ecell
=Ecathode
-Eanode+IR
R:resistanceofsolution,I:current(6-4)6.2PotentiometryPrinciple
(6-5)(6-6)(6-7)(6-8)2.IonselectiveMembraneElectrodeStructureofISETypesFig6-1(1)TheGlassElectrodeAg︱Agcl(s)︱HCl(
inner)︱glass︱H+(unknownsolution)(6-9)Fig6-2Glasselectrode︱unknownsolution︱SCE(6-10)(6-11)(6-12)SelectivityofGlasselectrodeH+G-+M+(sol)M+G-+
H+(sol)k:selectivitycoefficient(6-13)(6-14)(6r-11)(2)TheResponseBehaviorofISENernstresponseandDetectlimit(6-15)Fig6-3SelectivityResponsetime(6-16)Fig6-4ThePrerequisiteofExperimentsIonIntensityBuffer3.QuantitativeAnalysis(6-17)(6-18)(6-19)f_activitycoefficientIfCion,T≈constant,f≈constant.pHBufferMZ++xOH-M(OH)x(z-x)+H++OH-H2OComplexreagentMZ++nL
MLnZ+
(6-20)(6r-12)(6r-13)(6r-14)(6-21)(6-22)(6-23)(6-24)(2)StandardcalibrationMethodsC0/molL-110-33.16x10-410-43.16x10-510-5lgc-3-3.500-4-4.500-5standardconcentrationseriesIf=1:E=K+slgC0Fig6-5(3)StandardAdditionMethods(6-25)(6-26)(6-27)(6-28)assume:f1=f2,
1=2,S=0.0591/n(6-29)(6-30)(6-31)6.3PolarographyIntroduction(1)ElectrolyticcellCathode: M++e-→M Hg(l)∣M+(C)︱SCE
Wkg:WorkingElectrodeRef:ReferenceElectrode(SCE)(2)Polarization
M+(Bulk)→M+(Cathode)Fig6-72.TheDroppingMercuryElectrode(DME)(1)StructureofDMEFig6-8(2)ElectrolyticcurrentandcurrentdensityFig6-93.QuantitativeAnalysis
(1)IlkovicEquationm____rateofmercuryflowD____diffusioncoefficient____Averagediffusioncurrent(6-32)(6-33)(2)ThefactorofaffectdiffusioncurrentResidualcurrentChangingcurrentMigratingcurrentMaximumphenomenonOxygeninterference4.QualitativeAnalysisHalfwavepotential(6-34)(6-35)Chapter7
GasChromatograph7.1IntroductiontoInterphaseSeparationsInterphaseSeparationsMixedSubstancesMobilePhaseStationaryPhaseSeparatedComponents2.ClassificationofChromatography
InstrumentationBythetypesofmobilephase&stationaryphaseGas-LiquidGLCGas-SolidGSCLiquid-LiquidLLCLiquid-SolidLSCBystationary’sformsColumn
PaperthinlayerByseparationmechanismabsorptionpartitionexchange3.TypicalGCSProgressesCarriergasColumnInjectorSampleDetectorChromatogram7.2PrincipleofGC1.TheInterphasePartitionofOneSubstanceC(m)C(s)(1)
PartitionCoefficientK7-1(2)
PartitionRatiokp,q:massfractioninthestationaryandmobilephasek:
PartitionRatioorCapacityfactor
:phaseratio7-27-37-42.TheoreticalPlate(1)Somecommonrelationship(2)TheoreticalPlateModel:HeightEquivalenttoaTheoreticalPlate(HETP)GasFlowrateis1plateVolumepertimeKisaconstantSamplecomeintotheplateonlybytheplateNo.07-5Binomialdistributing7-77-63.ExportCurveEquationExportCurveEquation
(Gaussdistribution)7-8(2)TheShapeofExportcurvetm(tair):unreteinedtime
tR:retentiontimeT’R:adjustedretentiontimeVm(Vair):unreteinedvolumeVR:retentionvolumeV’R:adjustedretentionvolumeh:Peakofzone:StandarddeviationY:WidthofzoneY1/2:Halfpeakwidth7-97-107-117-127-13(3)TheNumberoftheoreticalplateandHETPL:lengthofthecolumn7-147-157-157-174.VanDeemterEquationu:velocityofthecarriergasA,BandCaretheconstantsforagivensystem7-187.3SeparationofComponentsSeparationfortowcomponents(1)ResolutionR(2)SeparationFactor7-197-202.SeparationEquationofGCAssume:
Y1=Y2=Y,k1≈k2=k7-217-227-233.ThreeSeparationfactor(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴陽(yáng)職業(yè)技術(shù)學(xué)院《區(qū)域分析與區(qū)域規(guī)劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年云南建筑安全員B證(項(xiàng)目經(jīng)理)考試題庫(kù)
- 貴陽(yáng)人文科技學(xué)院《測(cè)量平差》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州中醫(yī)藥大學(xué)《通信經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025云南省安全員C證考試(專職安全員)題庫(kù)附答案
- 2025年海南省安全員知識(shí)題庫(kù)及答案
- 廣州應(yīng)用科技學(xué)院《大數(shù)據(jù)案例分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025安徽省安全員-B證考試題庫(kù)附答案
- 2025上海市安全員《C證》考試題庫(kù)
- 《組合圖形面積》課件
- 云倉(cāng)存儲(chǔ)合同范本
- 曝氣機(jī)安裝方案
- 機(jī)電傳動(dòng)單向數(shù)控平臺(tái)(礦大)
- 全國(guó)職業(yè)院校技能大賽中職組電子電路裝調(diào)與應(yīng)用賽項(xiàng)評(píng)分表
- 2024年西藏初中學(xué)業(yè)水平考試生物試題(原卷版)
- 北外丁往道《英語(yǔ)寫(xiě)作手冊(cè)》教案
- 履帶吊和汽車吊荷載表
- MOOC 電機(jī)與拖動(dòng)-北京信息科技大學(xué) 中國(guó)大學(xué)慕課答案
- 壓縮空氣氣體管道吹掃試壓專項(xiàng)方案
- 2021年海南省公務(wù)員考試《行測(cè)》真題和答案解析
- 《中醫(yī)基礎(chǔ)理論講座》課件
評(píng)論
0/150
提交評(píng)論