數(shù)據(jù)分析驗證性實驗報告_第1頁
數(shù)據(jù)分析驗證性實驗報告_第2頁
數(shù)據(jù)分析驗證性實驗報告_第3頁
數(shù)據(jù)分析驗證性實驗報告_第4頁
數(shù)據(jù)分析驗證性實驗報告_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)據(jù)分析驗證性實驗報告題目1、1991年我國30個省、區(qū)、市城鎮(zhèn)居民月平均消費八個指標(單位均為元/人)X1:人均糧食支出X2:人均副食支出 X3:人均煙茶支出X4:人均其它副食支出X5:人均衣著商品支出X6:人均日用品支出X7:人均燃料支出X8:人均非商品支出省區(qū)市X1X2X3X4X5X6X7X8山西8.3523.537.518.6217.4210.001.0411.21內(nèi)蒙古9.2523.756.619.1917.7710.481.7210.51吉林8.1930.504.729.7816.287.602.5210.32黑龍江7.7329.205.429.4319.298.492.5210.00河南9.4227.938.208.1416.179.421.559.76甘肅9.1627.989.019.3215.999.101.8211.35青海10.0628.6410.5210.0516.188.391.9610.81河北9.0928.127.409.6217.2611.122.4912.56陜西9.4128.205.7710.8016.3611.561.5312.17寧夏8.7028.127.2110.5319.4513.301.6611.96新疆6.9329.854.549.4916.6210.651.8813.61湖北8.6736.057.317.7516.6711.682.8312.88云南9.9837.697.018.9416.1511.080.8311.67湖南6.7738.696.018.8214.7911.441.7413.23安徽8.1437.759.618.4913.159.761.2811.28貴州7.6735.718.048.3115.137.761.4113.25遼寧7.9039.778.4912.9419.2711.052.0413.29四川7.1840.917.328.9417.6012.751.1414.08山東8.8233.707.5910.9818.8214.731.7810.10江西6.2535.024.726.2810.037.151.9310.39福建10.6052.417.709.9812.5311.702.3114.69廣西7.2752.653.849.1613.0315.261.9814.57海南13.44555.855.507.459.559.522.2116.30天津10.8544.687.3214.5117.1312.081.2611.57江蘇7.2145.797.6610.3616.5612.862.2511.69浙江7.6850.3711.3513.3019.2514.592.7514.87北京7.7848.448.0020.5122.1215.731.1516.61西藏7.9439.6520.9720.8222.5212.411.757.90上海8.2864.348.0022.2220.0615.120.7222.89廣東12.4776.395.5211.2414.5222.005.4625.50設(shè)前20個省份為第1類G1,21-27號省份(即福建,…,北京)為第2類G2,最后三個省份(西藏、上海、廣東)待判。試判別西藏、上海、廣東各屬哪一類,并計算判別率的回代估計。80二、程序1.錄入數(shù)據(jù)2.按“Analyze→Classify→Discriminant”順序,打開DiscriminantAnalysis主對話框,選擇“類別”為GroupingVariable(分組變量),定義“類別”的區(qū)域,選擇x1、x2、x3、x4、x5、x6、x7、x8為IndepentVariable(解釋變量)。3.點擊Statistics按鈕,進入Statistics對話框,在Descriptives欄選擇Mean(對各組的各個變量作均值和標準差的描述;②在FunctionCoefficients欄(判別函數(shù)的系數(shù))選擇Fisher’s(Fisher線性判別函數(shù))和Unstandardized(判別方程的非標準化系數(shù))非標準化函數(shù);③在Matrices欄選Within-groupscorrelation(組內(nèi)相關(guān)矩陣),Within-groupscovariance(組內(nèi)協(xié)方差矩陣),Separate-groupscovariance(組間協(xié)方差矩陣),Totalcovariance(總協(xié)方差矩陣)。4.點擊Classification按鈕,進入Classification對話框。在PriorProbabilities欄選擇Allgroupsequal;②在display欄選擇casewiseresults(每個個體的結(jié)果),Summerrytable(綜合表)5.點擊Save按鈕,保存選項中可以選擇預測的分類、判別得分以及所屬類別的概率。運行結(jié)果表1協(xié)方差矩陣a類別x1x2x3x4x5x6x7x81x11.142-2.486.886.432.809.328-.049-.512x2-2.48628.166.604-.289-2.9891.861-.3533.573x3.886.6042.639.407.339.204-.208-.027x4.432-.289.4071.9082.1671.204.069.277x5.809-2.989.3392.1674.8622.371.167.260x6.3281.861.2041.2042.3713.920-.176.894x7-.049-.353-.208.069.167-.176.275-.073x8-.5123.573-.027.277.260.894-.0731.8202x15.7884.060-1.377-3.903-6.551-4.759-.047.843x24.06015.941-3.326-9.715-11.772-2.6181.0695.911x3-1.377-3.3265.3974.6406.3731.030.389-.242x4-3.903-9.7154.64019.28617.2255.855-1.6721.189x5-6.551-11.7726.37317.22518.5996.866-.976-.593x6-4.759-2.6181.0305.8556.8664.946-.275.535x7-.0471.069.389-1.672-.976-.275.339.062x8.8435.911-.2421.189-.593.535.0624.024合計x12.3242.272.362-.083-1.058-.380-.011.277x22.27288.673.3487.799-7.70110.541.71913.319x3.362.3483.1811.4751.689.489-.055.022x4-.0837.7991.4757.4765.1133.789-.2191.964x5-1.058-7.7011.6895.1137.9672.892-.135-.353x6-.38010.541.4893.7892.8925.493-.0822.196x7-.011.719-.055-.219-.135-.082.287.067x8.27713.319.0221.964-.3532.196.0673.614a.總的協(xié)方差矩陣的自由度為26。該表給出各類的協(xié)方差矩陣和總協(xié)方差矩陣。表2:有關(guān)典型判別函數(shù)的輸出表特征值函數(shù)特征值方差的%累積%正則相關(guān)性14.937a100.0100.0.912a.分析中使用了前1個典型判別式函數(shù)。Wilks的Lambda函數(shù)檢驗Wilks的Lambda卡方dfSig.1.16837.4048.000標準化的典型判別式函數(shù)系數(shù)函數(shù)1x1.376x2.891x3-.118x41.006x5-.644x6.393x7.372x8-.310結(jié)構(gòu)矩陣函數(shù)1x2.733x8.349x6.274x4.238x1.120x7.078x5-.056x3.021判別變量和標準化典型判別式函數(shù)之間的匯聚組間相關(guān)性按函數(shù)內(nèi)相關(guān)性的絕對大小排序的變量。組質(zhì)心處的函數(shù)類別函數(shù)11-1.26523.614在組均值處評估的非標準化典型判別式函數(shù)分類處理摘要已處理的27已排除的缺失或越界組代碼0至少一個缺失判別變量0用于輸出中27組的先驗概率類別先驗用于分析的案例未加權(quán)的已加權(quán)的1.5002020.0002.50077.000合計1.0002727.000解:由上可得:分類函數(shù)系數(shù)類別12x16.8308.051x22.1322.997x3-.395-.710x4-2.117-.126x55.9234.822x6-.236.703x77.08910.460x82.2801.294(常量)-119.594-171.802Fisher的線性判別式函數(shù)(1)、判別函數(shù)表達式為:F2=8.051x1+2.997x2-0.710x3-0.126x4+4.822x5+0.703x6+10.466x7+1.294x8-171.802F1=6.836x1+2.132x2-0.395x3-2.117x4+5.923x5-0.236x6+7.089x7+2.280x8-119.594協(xié)方差S1矩陣為:1x11.142-2.486.886.432.809.328-.049-.512x2-2.48628.166.604-.289-2.9891.861-.3533.573x3.886.6042.639.407.339.204-.208-.027x4.432-.289.4071.9082.1671.204.069.277x5.809-2.989.3392.1674.8622.371.167.260x6.3281.861.2041.2042.3713.920-.176.894x7-.049-.353-.208.069.167-.176.275-.073x8-.5123.573-.027.277.260.894-.0731.820協(xié)方差S2矩陣為協(xié)方差矩陣s2a類別x1x2x3x4x5x6x7x82x15.7884.060-1.377-3.903-6.551-4.759-.047.843x24.06015.941-3.326-9.715-11.772-2.6181.0695.911x3-1.377-3.3265.3974.6406.3731.030.389-.242x4-3.903-9.7154.64019.28617.2255.855-1.6721.189x5-6.551-11.7726.37317.22518.5996.866-.976-.593x6-4.759-2.6181.0305.8556.8664.946-.275.535x7-.0471.069.389-1.672-.976-.275.339.062x8.8435.911-.2421.189-.593.535.0624.024(2)判別準則:若F1>F2,則;若F1<F2,則;(3)對已知類別樣品判別分類樣品號原類號判歸類別111211311411511611711811911101111111211131114111511161117111811191120

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論