![七年級下冊數(shù)學(xué)期中專題復(fù)習(xí)_第1頁](http://file4.renrendoc.com/view/9e1254b2b8269efb8dcec30a8efe7479/9e1254b2b8269efb8dcec30a8efe74791.gif)
![七年級下冊數(shù)學(xué)期中專題復(fù)習(xí)_第2頁](http://file4.renrendoc.com/view/9e1254b2b8269efb8dcec30a8efe7479/9e1254b2b8269efb8dcec30a8efe74792.gif)
![七年級下冊數(shù)學(xué)期中專題復(fù)習(xí)_第3頁](http://file4.renrendoc.com/view/9e1254b2b8269efb8dcec30a8efe7479/9e1254b2b8269efb8dcec30a8efe74793.gif)
![七年級下冊數(shù)學(xué)期中專題復(fù)習(xí)_第4頁](http://file4.renrendoc.com/view/9e1254b2b8269efb8dcec30a8efe7479/9e1254b2b8269efb8dcec30a8efe74794.gif)
![七年級下冊數(shù)學(xué)期中專題復(fù)習(xí)_第5頁](http://file4.renrendoc.com/view/9e1254b2b8269efb8dcec30a8efe7479/9e1254b2b8269efb8dcec30a8efe74795.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
.1.解:甲、乙說法都不對,都少了三種情況.a(chǎn)∥b,c與a,b相交如圖(1);a,b,c兩兩相交如圖(2),所以三條直線互不重合,交點有0個或1個或2個或3個,共四種情況.
第一頁第二頁,共27頁。專題二相交線所成的角2.如圖,直線AB與CD相交于點O,OD恰為∠BOE的角平分線.(1)寫出∠AOD所有的的補角;(2)若∠AOD=150°,求∠AOE的度數(shù).
第二頁第三頁,共27頁。2.解:(1)∠AOC、∠BOD、∠EOD;(2)因為∠AOD=150°,所以∠BOD=180°-∠AOD
=180°-150°=30°.因為OD為∠BOE的角平分線,所以∠EOD=∠BOD=30°,所以∠AOE=∠AOD﹣∠EOD=140°-30°=110°.第三頁第四頁,共27頁。3.如圖,直線AB,CD,EF交于點O,∠BOC=46°.射線OE平分∠BOC,求:(1)∠2和∠3的度數(shù);(2)射線OF平分∠AOD嗎?請說明理由.第四頁第五頁,共27頁。3.解:(1)因為∠BOC=46°,而射線OE平分∠BOC,所以∠1=23°,而∠2+∠BOC=180°,所以∠2=180°﹣46°=134°,而∠1+∠2+∠3=180°,所以∠3=23°;(2)因為∠3=23°,而∠AOD=∠BOC=46°,所以O(shè)F平分∠AOD第五頁第六頁,共27頁。專題3平移的性質(zhì)1.如圖所示,在長方形菜地內(nèi)修建了條彎曲的柏油小路(小路任何地方的水平寬度都相同).已知長方形的水平方向的邊長為6米,豎直方向的邊長為4米,菜地的面積為18平方米,求小路的寬度.
第六頁第七頁,共27頁。1.解:設(shè)小路的寬為x米,根據(jù)題意得,4(6-x)=184x=6×4﹣18,解得x=1.5米.答:小路的寬為1.5米。第七頁第八頁,共27頁。2.如圖,四邊形ABCD中,AD∥BC,且AD<BC,三角形ABC平移到三角形DEF的位置.(1)指出平移的方向和平移的距離;(2)試說明AD+BC=BF.第八頁第九頁,共27頁。2.解:(1)平移的方向是點A到點D的方向,平移的距離是線段AD的長度;(2)因為三角形ABC平移到三角形DEF的位置,所以CF=AD,因為CF+BC=BF,所以AD+BC=BF.第九頁第十頁,共27頁。3.如圖,在小方格的邊長為1的方格紙中,將正方形ABCD先向右平移3格,再向下平移5格,得到正方形EFGH,求正方形ABCD平移到正方形EFGH的過程中,所經(jīng)過或覆蓋的區(qū)域的面積為多少?第十頁第十一頁,共27頁。3.解:圖象向右平移3個格,則覆蓋的區(qū)域以及進過的區(qū)域是一個長是4,寬是3的矩形,則面積是4×3=12;再向下平移5個格,經(jīng)過的區(qū)域是長是5,寬是4的矩形,面積是5×4=20.則在正方形ABCD平移到正方形EFGH的過程中,所經(jīng)過或覆蓋的區(qū)域的面積為12+20=32.第十一頁第十二頁,共27頁。專題4利用平行線的性質(zhì)求角如圖,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度數(shù).第十二頁第十三頁,共27頁。3.解:因為FG∥EC,所以∠ACE=∠CAG=36°,因為∠PAC=∠CAG+∠PAG,所以∠PAC=36°+12°=48°,因為AP平分∠BAC,所以∠PAC=∠BAP=48°,因為DB∥FG,所以∠ABD=∠BAG=48°+∠PAG=48°+12°=60°.第十三頁第十四頁,共27頁。如圖,點A、B分別在直線CM、DN上,CM∥DN.(1)如圖1,連接AB,則∠CAB+∠ABD=
;(2)如圖2,點P1是直線CM、DN內(nèi)部的一個點,連接AP1、BP1.求證:∠CAP1+∠AP1B+∠P1BD=360°;(3)如圖3,點P1、P2是直線CM、DN內(nèi)部的一個點,連接AP1、P1P2、P2B.試求∠CAP1+∠AP1P2+∠P1P2B+∠P2BD的度數(shù);(4)若按以上規(guī)律,猜想并直接寫出∠CAP1+∠AP1P2+…+∠P5BD的度數(shù)(不必寫出過程).第十四頁第十五頁,共27頁。解:(1)因為CM∥DN.所以∠CAB+∠ABD=180°;(2)點P1作平行于CM和DN的平行線,所以∠AP1E+∠CAP1=180°,∠EP1B+∠P1BD=180°,所以∠CAP1+∠AP1B+∠P1BD=∠AP1E+∠CAB+∠EP1B+∠P1BD=180°+180°=360°;(3)過點P1、P2作平行于CM和DN的平行線,所以∠AP1E+∠CAP1=180°,∠EP1P2+∠P1P2F=180°,∠FP2B+∠P2BD=180°,所以∠CAP1+∠AP1P2+∠P1P2B+∠P2BD=∠AP1E+∠CAB+∠EP1P2+∠P1P2F+∠FP2B+∠P2BD=3×180°=540°;(4)∠CAP1+∠AP1P2+…+∠P5BD=6×180°=1080°.第十五頁第十六頁,共27頁。如圖所示,已知AB∥CD,分別探討下面四個圖形中,∠APC,∠PAB與∠PCD的關(guān)系.第十六頁第十七頁,共27頁。解:圖1:∠APC=∠PAB+∠PCD.理由:過點P作PE∥AB,因為AB∥CD,所以AB∥PE∥CD(平行關(guān)系的傳遞性),所以∠1=∠A,∠2=∠C,所以∠APC=∠1+∠2=∠PAB+∠PCD,即∠APC=∠PAB+∠PCD;圖2:∠APC+∠PAB+∠PCD=360°.理由:過點P作PE∥AB.因為AB∥CD,所以AB∥PE∥CD(平行關(guān)系的傳遞性),所以∠A+∠1=180°,∠2+∠C=180°,所以∠A+∠1+∠2+∠C=360°,所以∠APC+∠PAB+∠PCD=360°;第十七頁第十八頁,共27頁。圖3:∠APC=∠PCD﹣∠PAB.理由:延長DC交AP于點E.因為AB∥CD,所以∠1=∠PAB(兩直線平行,同位角相等);又因為∠PCD=∠1+∠APC,所以∠APC=∠PCD﹣∠PAB;圖4:所以∠PAB=∠APC+∠PCD.理由:因為AB∥BC,所以∠1=∠PAB(兩直線平行,內(nèi)錯角相等);又因為∠1=∠APC+∠PCD,所以∠PAB=∠APC+∠PCD.第十八頁第十九頁,共27頁。專題5平行線的判定如圖,直線AB過點C,∠2=62°,∠D=59°,∠1=∠3,AB∥DE嗎?為什么?第十九頁第二十頁,共27頁。解:AB∥DE.理由如下:因為∠2=62°,∠1=∠3(已知)∠1+∠2+∠3=180°(平角定義)所以∠1=∠3=59°.又因為∠D=59°,(已知)所以∠1=∠D.(等量代換)所以AB∥DE.(內(nèi)錯角相等,兩直線平行)第二十頁第二十一頁,共27頁。如圖,∠BAF=46°,∠ACE=136°,∠DCE=90°.問CD∥AB嗎?為什么?第二十一頁第二十二頁,共27頁。解:CD∥AB.理由:因為∠DCE=90°,∠ACE=136°,所以∠ACD=360°﹣136°﹣90°=134°,因為∠BAF=46°,所以∠BAC=180°﹣∠BAF=180°﹣46°=134°,所以CD∥AB.第二十二頁第二十三頁,共27頁。已知:如圖,∠1=∠2,∠A=∠C.試說明:AE∥BC.第二十三頁第二十四頁,共27頁。因為∠1=∠2,
最新文檔
- 人工智能AI對人形機器人發(fā)展的影響
- 惠州學(xué)院《勞動通論》2023-2024學(xué)年第二學(xué)期期末試卷
- 黑龍江三江美術(shù)職業(yè)學(xué)院《數(shù)據(jù)挖掘B》2023-2024學(xué)年第二學(xué)期期末試卷
- 常州機電職業(yè)技術(shù)學(xué)院《管理學(xué)概論》2023-2024學(xué)年第二學(xué)期期末試卷
- 萍鄉(xiāng)學(xué)院《小稅種與稅收征管》2023-2024學(xué)年第二學(xué)期期末試卷
- 甘肅醫(yī)學(xué)院《智能計算與最優(yōu)化》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年02月天津2024年興業(yè)銀行天津分行春季校園招考筆試歷年參考題庫附帶答案詳解
- 2025年潮牌合作協(xié)議書
- 2025至2030年中國方型燙臺數(shù)據(jù)監(jiān)測研究報告
- 第四屆品酒師競賽復(fù)習(xí)試題含答案
- 交流伺服系統(tǒng)常見故障及處理分解課件
- 水土保持單元工程質(zhì)量評定表
- 圣三國蜀漢傳攻略
- 2021屆高考英語887核心詞(打印、詞頻、出處、例句、背誦)
- 天津市鄉(xiāng)鎮(zhèn)衛(wèi)生院街道社區(qū)衛(wèi)生服務(wù)中心地址醫(yī)療機構(gòu)名單
- 公司機關(guān)管理類責(zé)任矩陣
- 山東省青島市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細及行政區(qū)劃代碼
- 《鉆井液用磺甲基酚醛樹脂技術(shù)要求》
- 數(shù)學(xué)-九宮數(shù)獨100題(附答案)
- 中國農(nóng)業(yè)發(fā)展銀行XX支行 關(guān)于綜合評價自評情況的報告
- 2010年宣武區(qū)第六屆中小學(xué)生地理知識競賽題庫
評論
0/150
提交評論