




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Assignment5
1PrimeandDual
SupposethatwearegivenalinearprogramLinstandardform,andsupposethatforbothLandthedualofL,thebasicsolutionsassociatedwiththeinitialslackformsarefeasible.ShowthattheoptimalobjectivevalueofLis0.
Answer:TheLandthedualofL’sinitialsolutionsbothare0,andbecauseanysolutionforLisnotsmallerthanthesolutionfordualofL.ThentheoptimalofL(minforL)andtheoptimalofdualofL(maxfordualofL)arethesame,allare0.
2Linear-InequalityFeasibility
Givenasetofmlinearinequalitiesonnvariablesx1,x2,...,xn,thelinear-inequalityfeasibilityproblemasksifthereisasettingofthevariablesthatsimultaneouslysatisfieseachoftheinequalities.
a.Showthatifwehaveanalgorithmforlinearprogramming,wecanuseittosolvethelinear-inequalityfeasibilityproblem.Thenumberofvariablesandconstraintsthatyouuseinthelinear-grogrammingproblemshouldbepolynomialinnandm.
b.Showthatifwehaveanalgorithmforthelinear-inequalityfeasibilityproblem,wecanuseittosolvealinear-programmingproblem.Thenumberofvariablesandlinearinequalitiesthatyouuseinthelinear-inequalityfeasibilityproblemshouldbepolynomialinnandm,thenumberofvariablesandconstraintsinthelinearprogramming.
Answer:
Noneedforoptimalfunctionforthelinear-inequalityfeasibilityproblem.ThenruntheLP-Algorithm.Infact,theLP-Algorithmispolynomialinnandm.
Weshouldrunthealgorithmforthelinear-inequalityfeasibilityproblemfortheLP-ProblemandDLP-Problem.Thenwegettwovalue(oneforLPandanotherforDLP,butneitherisoptimal)Butwecangettheoptimalmustbeintheintervalofthesetwovalues.ThenwegetthemedianofthesetwovaluesandaddmoreinequalityforLP-ProblemandcorrespondingDLP-Problem.Weiterativelyrunthealgorithmuntiltheintervalistoomuchsmall.ThenthissmallintervalistheoptimalvalueforLP-Problem.
3LinearProgrammingModelling
IntegerLinearProgrammingProblemisdifferentfromtheclassicLinearProgrammingProblemthatsomeextraconstraintssuchas
xiisaninteger,foralli=1,2,...,n
areadded.
Arailwaystationhasestimatedthatatleastthefollowingnumberofstaffisneededineachfour-hourintervalthroughoutastandard24-hourperiodandthesalaryperhourforeverypersonduringthedifferentperiod:
TimePeriodStaffNeeded
5:00-9:00S1
9:00-13:00S2
13:00-17:00S3
17:00-21:00S4
21:00-1:00S5
1:00-5:00S6
TimePeriodSalaryPerHourForEveryPerson
0:00-8:00C1
8:00-16:00C2
16:00-24:00C3
Allstaffworksin8-hour-shifts,whichmeanseverypersonwilldocontinuousworkfor8hours.Therearesixpossibleshiftsthatstartonthehourinthebeginningofeach4-hourperiodinthetable.Nowiftherailwaystationwanttominimizethetotalsalarypaidinoneday,pleaseformulatethisproblemasanintegerlinearprogrammingproblem.
Answer:Wecansetthenumberofstaffstartingworkingat5:009:0013:0017:0021:001:00arex1,x2,x3,x4,x5,x6.Sowecangettheintegerlinearprogrammingmodel:
Min:3*C1*x1+5*C2*x1+7*C2*x2+C3*x2+3*C2*x3+5*C3*x3+7*C3*x4+C1*x4+
3*C3*x5+5*C1*x5+7*C1*x6+C2*x6
s.t.x1+x6≥S1
x1+x2≥S2
x2+x3≥S3
x3+x4≥S4
x4+x5≥S5
x5+x6≥S6
foralli=1…6xiispositiveinteger
4LinearProgrammingModelling
0-1IntegerProgrammingProblemisdifferentfromtheclassicLinearProgrammingProblemthatsomeextraconstraintssuchas
xi2{0,1},foralli=1,2,...,n
areadded.
ThereisanundirectedgraphGwithnnodes.WeuseamatrixMtodenotethatwhethertwonodesareconnectedbyanedge.Inotherwords,Mijis1ifiandjareadjacent,and0otherwise.Ifyouwanttopaintthenodeswithsomecolors,suchthatanytwoadjacentnodesdon’tsharethesamecolor,andyoutrytouseaslesscolorsaspossible,pleaseformulatethisproblemasanintegerlinearprogrammingproblem(seethedefinitioninProblem4)ora0-1linearprogrammingproblem.
Answer:wecangetallthetwonodeswhicharenotconnectedbyanedgemeansavariable(thisvariablecanbe0meansthetwonodesarenotinsamecolor,1meansinsamecolor)alsowegetthetwonodeswhichareconnectedbyanedgemeansaconstantfor0(itmeansthesetwonodescanneverbeinsamecolor).Wewillgetthemaxthesumofallthesevariablesintheconstraints:foreverythreenodesweshouldbesurethatthesumofthree“edges”canneverbe2(becauseifitis2,itmeansinthesethreenodes,thenumberoftwonodesisinsamecoloris2andothertwonodes
Answer:
wesetx1isthenumberofproductIandx2isthenumberofproductII,sothelinearprogrammingisasfollowing:
max2x1+3x2ormin-2x1-3x2
s.t.x1+2x2≤8
4x1≤16
4x2≤12
x1≥0
x2≥0
Wegettheoptimalanswerisx1=4,x2=2,andthismaxis14
thedualproblem:wecansety1,y2,y3,isthenumberofdevice,materialAandmaterialB.Sotheduallinearprogrammingisasfollowing:
min8y1+16y2+12y3
s.t.y1+4y2≥2
2y1+4y3≥3
y1≥0
y2≥0
y3≥0
Wecanalsogettheoptimalanswerisy1=1.5,y2=0.125,y3=0,andthisminis14,too.Themeaningofthedualproblem:
Wecanthinkthatinthiscase,wemustbesurethattheprofitofproductIisatleast$2,andtheprofitofproductIIisatleast$3,andletthestuff(itmeansthatwegetminof8y1+16y2+12y3)beasleast
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級下美術教學設計-光的魅力-人教新課標
- 本土文化的地理特色試題及答案
- 咽峽炎的護理查房
- 水資源綜合利用規(guī)劃計劃
- 行業(yè)新規(guī)對工作的影響計劃
- 增加中小學生閱讀活動計劃
- 學校美術補習班開設方案計劃
- 借助社交媒體增強品牌互動計劃
- 生物學習動機的激發(fā)策略計劃
- 轉型升級中的生產(chǎn)管理挑戰(zhàn)計劃
- 2025年國家公務員錄用考試公共基礎知識預測押題試卷及答案(共七套)
- 2025-2030中國兒童服裝行業(yè)市場發(fā)展分析及投資前景預測研究報告
- 部編版語文教材培訓講座-口語交際
- 2025年全國中小學生安全教育日專題
- 2025年工程力學筆試試題及答案
- 2025年電子設備裝接工崗位職業(yè)技能資格證考試題(附答案)
- 2025年河南航空港發(fā)展投資集團有限公司社會招聘45人筆試參考題庫附帶答案詳解
- 企業(yè)一季一課安全教育記錄(2篇)
- 2025-2030年中國工業(yè)廢水處理產(chǎn)業(yè)十三五發(fā)展規(guī)劃及戰(zhàn)略規(guī)劃分析報告
- DB37T 5157-2020 住宅工程質量常見問題防控技術標準
- 煙氣超低排放改造和增設脫硝項目資金申請報告寫作模板定制
評論
0/150
提交評論