版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Assignment5
1PrimeandDual
SupposethatwearegivenalinearprogramLinstandardform,andsupposethatforbothLandthedualofL,thebasicsolutionsassociatedwiththeinitialslackformsarefeasible.ShowthattheoptimalobjectivevalueofLis0.
Answer:TheLandthedualofL’sinitialsolutionsbothare0,andbecauseanysolutionforLisnotsmallerthanthesolutionfordualofL.ThentheoptimalofL(minforL)andtheoptimalofdualofL(maxfordualofL)arethesame,allare0.
2Linear-InequalityFeasibility
Givenasetofmlinearinequalitiesonnvariablesx1,x2,...,xn,thelinear-inequalityfeasibilityproblemasksifthereisasettingofthevariablesthatsimultaneouslysatisfieseachoftheinequalities.
a.Showthatifwehaveanalgorithmforlinearprogramming,wecanuseittosolvethelinear-inequalityfeasibilityproblem.Thenumberofvariablesandconstraintsthatyouuseinthelinear-grogrammingproblemshouldbepolynomialinnandm.
b.Showthatifwehaveanalgorithmforthelinear-inequalityfeasibilityproblem,wecanuseittosolvealinear-programmingproblem.Thenumberofvariablesandlinearinequalitiesthatyouuseinthelinear-inequalityfeasibilityproblemshouldbepolynomialinnandm,thenumberofvariablesandconstraintsinthelinearprogramming.
Answer:
Noneedforoptimalfunctionforthelinear-inequalityfeasibilityproblem.ThenruntheLP-Algorithm.Infact,theLP-Algorithmispolynomialinnandm.
Weshouldrunthealgorithmforthelinear-inequalityfeasibilityproblemfortheLP-ProblemandDLP-Problem.Thenwegettwovalue(oneforLPandanotherforDLP,butneitherisoptimal)Butwecangettheoptimalmustbeintheintervalofthesetwovalues.ThenwegetthemedianofthesetwovaluesandaddmoreinequalityforLP-ProblemandcorrespondingDLP-Problem.Weiterativelyrunthealgorithmuntiltheintervalistoomuchsmall.ThenthissmallintervalistheoptimalvalueforLP-Problem.
3LinearProgrammingModelling
IntegerLinearProgrammingProblemisdifferentfromtheclassicLinearProgrammingProblemthatsomeextraconstraintssuchas
xiisaninteger,foralli=1,2,...,n
areadded.
Arailwaystationhasestimatedthatatleastthefollowingnumberofstaffisneededineachfour-hourintervalthroughoutastandard24-hourperiodandthesalaryperhourforeverypersonduringthedifferentperiod:
TimePeriodStaffNeeded
5:00-9:00S1
9:00-13:00S2
13:00-17:00S3
17:00-21:00S4
21:00-1:00S5
1:00-5:00S6
TimePeriodSalaryPerHourForEveryPerson
0:00-8:00C1
8:00-16:00C2
16:00-24:00C3
Allstaffworksin8-hour-shifts,whichmeanseverypersonwilldocontinuousworkfor8hours.Therearesixpossibleshiftsthatstartonthehourinthebeginningofeach4-hourperiodinthetable.Nowiftherailwaystationwanttominimizethetotalsalarypaidinoneday,pleaseformulatethisproblemasanintegerlinearprogrammingproblem.
Answer:Wecansetthenumberofstaffstartingworkingat5:009:0013:0017:0021:001:00arex1,x2,x3,x4,x5,x6.Sowecangettheintegerlinearprogrammingmodel:
Min:3*C1*x1+5*C2*x1+7*C2*x2+C3*x2+3*C2*x3+5*C3*x3+7*C3*x4+C1*x4+
3*C3*x5+5*C1*x5+7*C1*x6+C2*x6
s.t.x1+x6≥S1
x1+x2≥S2
x2+x3≥S3
x3+x4≥S4
x4+x5≥S5
x5+x6≥S6
foralli=1…6xiispositiveinteger
4LinearProgrammingModelling
0-1IntegerProgrammingProblemisdifferentfromtheclassicLinearProgrammingProblemthatsomeextraconstraintssuchas
xi2{0,1},foralli=1,2,...,n
areadded.
ThereisanundirectedgraphGwithnnodes.WeuseamatrixMtodenotethatwhethertwonodesareconnectedbyanedge.Inotherwords,Mijis1ifiandjareadjacent,and0otherwise.Ifyouwanttopaintthenodeswithsomecolors,suchthatanytwoadjacentnodesdon’tsharethesamecolor,andyoutrytouseaslesscolorsaspossible,pleaseformulatethisproblemasanintegerlinearprogrammingproblem(seethedefinitioninProblem4)ora0-1linearprogrammingproblem.
Answer:wecangetallthetwonodeswhicharenotconnectedbyanedgemeansavariable(thisvariablecanbe0meansthetwonodesarenotinsamecolor,1meansinsamecolor)alsowegetthetwonodeswhichareconnectedbyanedgemeansaconstantfor0(itmeansthesetwonodescanneverbeinsamecolor).Wewillgetthemaxthesumofallthesevariablesintheconstraints:foreverythreenodesweshouldbesurethatthesumofthree“edges”canneverbe2(becauseifitis2,itmeansinthesethreenodes,thenumberoftwonodesisinsamecoloris2andothertwonodes
Answer:
wesetx1isthenumberofproductIandx2isthenumberofproductII,sothelinearprogrammingisasfollowing:
max2x1+3x2ormin-2x1-3x2
s.t.x1+2x2≤8
4x1≤16
4x2≤12
x1≥0
x2≥0
Wegettheoptimalanswerisx1=4,x2=2,andthismaxis14
thedualproblem:wecansety1,y2,y3,isthenumberofdevice,materialAandmaterialB.Sotheduallinearprogrammingisasfollowing:
min8y1+16y2+12y3
s.t.y1+4y2≥2
2y1+4y3≥3
y1≥0
y2≥0
y3≥0
Wecanalsogettheoptimalanswerisy1=1.5,y2=0.125,y3=0,andthisminis14,too.Themeaningofthedualproblem:
Wecanthinkthatinthiscase,wemustbesurethattheprofitofproductIisatleast$2,andtheprofitofproductIIisatleast$3,andletthestuff(itmeansthatwegetminof8y1+16y2+12y3)beasleast
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省昭通市昭陽區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期1月期末考試歷史試卷(無答案)
- 第24課 人民解放戰(zhàn)爭的勝利(分層作業(yè))(解析版)
- 2024影視作品授權(quán)播放合同播放平臺(tái)及時(shí)間
- 2025門面房出租經(jīng)營權(quán)質(zhì)押合同經(jīng)營權(quán)質(zhì)押
- 市場營銷臨時(shí)用電施工合同
- 飼料店門鎖使用規(guī)范
- 銀行授權(quán)操作規(guī)程
- 親子攀巖活動(dòng)免責(zé)承諾書
- 飲料廠防疫操作指南
- 四川省文化場館建設(shè)招標(biāo)文件
- 期末(試題)-2024-2025學(xué)年人教PEP版英語六年級(jí)上冊(cè)
- 2024年公安基礎(chǔ)知識(shí)考試題庫及答案
- 三創(chuàng)賽獲獎(jiǎng)-非遺文化創(chuàng)新創(chuàng)業(yè)計(jì)劃書
- 教你成為歌唱達(dá)人智慧樹知到期末考試答案2024年
- 2024分娩鎮(zhèn)痛ppt課件完整版
- 酒店水單模板
- SCI論文寫作課件
- (完整版)展廳展館博物館美術(shù)館設(shè)計(jì)標(biāo)招標(biāo)評(píng)分細(xì)則及打分表
- [宋小寶小品甄嬛后傳臺(tái)詞]甄嬛歪傳小品劇本臺(tái)詞范本
- 扭扭棒手工PPT課件
- 典型6B燃機(jī)技術(shù)協(xié)議書A_Rev_0527
評(píng)論
0/150
提交評(píng)論