版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第頁碼頁碼頁/總共NUMPAGES總頁數(shù)總頁數(shù)頁14.3.2 等邊三角形(一)14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠b的度數(shù)。14.3.2等邊三角形(一)教學(xué)目的1.使學(xué)生熟練地運用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。2.熟識等邊三角形的性質(zhì)及判定.2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。教學(xué)重點、等腰三角形的性質(zhì)及其應(yīng)用。教學(xué)難點簡潔的邏輯推理。教學(xué)過程一、復(fù)習(xí)鞏固1.?dāng)⑹龅妊切蔚男再|(zhì),它是怎么得到的?等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即ab與ac重合,點b與點c重合,線段bd與cd也重合,所以∠b=∠c。等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于ad為等腰三角形的對稱軸,所以bd=cd,ad為底邊上的中線;∠bad=∠cad,ad為頂角平分線,∠adb=∠adc=90°,ad又為底邊上的高,因此“三線合一”。2.若等腰三角形的兩邊長為3和4,則其周長為多少?二、新課在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。等邊三角形具有什么性質(zhì)呢?1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。2.你能否用已知的知識,通過推理得到你的猜想是正確的?等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠a=∠b=c,又由∠a+∠b+∠c=180°,從而推出∠a=∠b=∠c=60°。3.上面的條件和結(jié)論如何敘述?等邊三角形的各角都相等,并且每一個角都等于60°。等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?等邊三角形也稱為正三角形。例1.在△abc中,ab=ac,d是bc邊上的中點,∠b=30°,求∠1和∠adc的度數(shù)。分析:由ab=ac,d為bc的中點,可知ab為bc底邊上的中線,由“三線合一”可知ad是△abc的頂角平分線,底邊上的高,從而∠adc=90°,∠l=∠bac,由于∠c=∠b=30°,∠bac可求,所以∠1可求。問題1:本題若將d是bc邊上的中點這一條件改為ad為等腰三角形頂角平分線或底邊bc上的高線,其它條件不變,計算的結(jié)果是否一樣?問題2:求∠1是否還有其它方法?三、練習(xí)鞏固1.判斷下列命題,對的打“√”,錯的打“×”。a.等腰三角形的角平分線,中線和高互相重合()b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°()2.如圖(2),在△abc中,已知ab=ac,ad為∠bac的平分線,且∠2=25°,求∠adb和∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年社區(qū)食堂社會化運營管理服務(wù)合同3篇
- 2025年度水電安裝公司承包項目合同范本(二零二五版)6篇
- 2025版股票投資合作市場調(diào)研與競爭分析合同范本3篇
- 2024年度房地產(chǎn)項目擔(dān)保買賣合同規(guī)范版3篇
- 二零二五年度XX文化演出票務(wù)銷售與推廣服務(wù)合同3篇
- 二零二五年度出租車司機勞務(wù)派遣合同3篇
- 2025年學(xué)校藝術(shù)教育用品采購合同范本3篇
- 2025年度大數(shù)據(jù)分析與咨詢服務(wù)合同9篇
- 2024年版環(huán)保項目合作合同版B版
- 二零二五年商業(yè)綜合體地產(chǎn)項目招商投資合同范本3篇
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之20:“7支持-7.3意識+7.4溝通”(雷澤佳編制-2025B0)
- 期末素養(yǎng)提升(試題)-2024-2025學(xué)年語文二年級上冊
- 2021年江蘇南京二十九中特長生考試數(shù)學(xué)試卷真題(含答案詳解)
- 選調(diào)生培訓(xùn)心得體會集合6篇
- 北京市朝陽區(qū)2023-2024學(xué)年九年級上學(xué)期期末物理試卷
- 全國賽課一等獎初中統(tǒng)編版七年級道德與法治上冊《正確對待順境和逆境》教學(xué)設(shè)計
- 2024年01月11073法律文書期末試題答案
- 體系工程師年終總結(jié)
- D502-15D502等電位聯(lián)結(jié)安裝圖集
- 設(shè)計風(fēng)速、覆冰的基準(zhǔn)和應(yīng)用
- 愛麗絲夢游仙境話劇中英文劇本
評論
0/150
提交評論