版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省成都市航天中學(xué)校2024屆數(shù)學(xué)高一上期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù),則A.3 B.2C. D.2.已知集合M={x|1≤x<3},N={1,2},則M∩N=()A. B.C. D.3.設(shè)函數(shù),A3 B.6C.9 D.124.已知函數(shù)的定義域與值域均為,則()A. B.C. D.15.已知函數(shù),,則的零點所在的區(qū)間是A. B.C. D.6.若一束光線從點射入,經(jīng)直線反射到直線上的點,再經(jīng)直線反射后經(jīng)過點,則點的坐標為()A. B.C. D.7.已知偶函數(shù)的定義域為,當時,,若,則的解集為()A. B.C. D.8.對于函數(shù),若存在,使,則稱點是曲線“優(yōu)美點”.已知,則曲線的“優(yōu)美點”個數(shù)為A.1 B.2C.4 D.69.下列四個命題:①三點確定一個平面;②一條直線和一個點確定一個平面;③若四點不共面,則每三點一定不共線;④三條平行直線確定三個平面.其中正確有A.1個 B.2個C.3個 D.4個10.已知函數(shù)的值域為,則實數(shù)m的值為()A.2 B.3C.9 D.27二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為________12.已知扇形的弧長為,且半徑為,則扇形的面積是__________.13.函數(shù)是定義在R上的奇函數(shù),當時,2,則在R上的解析式為________.14.若,,三點共線,則實數(shù)的值是__________15.唐代李皋發(fā)明了“槳輪船”,這種船是原始形態(tài)的輪船,是近代明輪船航行模式之先導(dǎo),如圖,某槳輪船的輪子的半徑為,他以的角速度逆時針旋轉(zhuǎn),輪子外邊沿有一點P,點P到船底的距離是H(單位:m),輪子旋轉(zhuǎn)時間為t(單位:s).當時,點P在輪子的最高處.(1)當點P第一次入水時,__________;(2)當時,___________.16.已知角的頂點為坐標原點,始邊為軸的正半軸,終邊經(jīng)過點,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知以點為圓心的圓與直線:相切,過點的直線與圓相交于,兩點,是的中點,.(1)求圓的標準方程;(2)求直線的方程.18.已知函數(shù)(1)證明:函數(shù)在上是增函數(shù);(2)求在上的值域19.已知函數(shù)是定義在上的奇函數(shù)(1)求實數(shù)的值;(2)判斷函數(shù)的單調(diào)性,并利用定義證明20.已知函數(shù)且圖象經(jīng)過點(1)求實數(shù)的值;(2)若,求實數(shù)的取值范圍.21.已知二次函數(shù)的圖象與軸、軸共有三個交點.(1)求經(jīng)過這三個交點的圓的標準方程;(2)當直線與圓相切時,求實數(shù)的值;(3)若直線與圓交于兩點,且,求此時實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】由題意得當時,函數(shù)取得最小值,∴,∴又由條件得函數(shù)的周期,解得,∴.選C2、B【解題分析】根據(jù)集合交集的定義可得所求結(jié)果【題目詳解】∵,∴故選B【題目點撥】本題考查集合的交集運算,解題的關(guān)鍵是弄清兩集合交集中元素的特征,進而得到所求集合,屬于基礎(chǔ)題3、C【解題分析】.故選C.4、A【解題分析】根據(jù)函數(shù)的定義域可得,,,再根據(jù)函數(shù)的值域即可得出答案.【題目詳解】解:∵的解集為,∴方程的解為或4,則,,,∴,又因函數(shù)的值域為,∴,∴.故選:A.5、C【解題分析】由題意結(jié)合零點存在定理確定的零點所在的區(qū)間即可.【題目詳解】由題意可知函數(shù)在上單調(diào)遞減,且函數(shù)為連續(xù)函數(shù),注意到,,,,結(jié)合函數(shù)零點存在定理可得的零點所在的區(qū)間是.本題選擇C選項.【題目點撥】應(yīng)用函數(shù)零點存在定理需要注意:一是嚴格把握零點存在性定理的條件;二是連續(xù)函數(shù)在一個區(qū)間的端點處函數(shù)值異號是這個函數(shù)在這個區(qū)間上存在零點的充分條件,而不是必要條件;三是函數(shù)f(x)在(a,b)上單調(diào)且f(a)f(b)<0,則f(x)在(a,b)上只有一個零點.6、C【解題分析】由題可求A關(guān)于直線的對稱點為及關(guān)于直線的對稱點為,可得直線的方程,聯(lián)立直線,即得.【題目詳解】設(shè)A關(guān)于直線的對稱點為,則,解得,即,設(shè)關(guān)于直線的對稱點為,則,解得,即,∴直線的方程為:代入,可得,故.故選:C.7、D【解題分析】先由條件求出參數(shù),得到在上的單調(diào)性,結(jié)合和函數(shù)為偶函數(shù)進行求解即可.【題目詳解】因為為偶函數(shù),所以,解得.在上單調(diào)遞減,且.因為,所以,解得或.故選:D8、C【解題分析】曲線的“優(yōu)美點”個數(shù),就是的函數(shù)關(guān)于原點對稱的函數(shù)圖象,與的圖象的交點個數(shù),求出的函數(shù)關(guān)于原點對稱的函數(shù)解析式,與聯(lián)立,解方程可得交點個數(shù)【題目詳解】曲線的“優(yōu)美點”個數(shù),就是的函數(shù)關(guān)于原點對稱的函數(shù)圖象,與的圖象的交點個數(shù),由可得,關(guān)于原點對稱的函數(shù),,聯(lián)立和,解得或,則存在點和為“優(yōu)美點”,曲線的“優(yōu)美點”個數(shù)為4,故選C【題目點撥】本題考查新定義的理解和運用,考查轉(zhuǎn)化思想和方程思想,屬于難題.遇到新定義問題,應(yīng)耐心讀題,分析新定義的特點,弄清新定義的性質(zhì),按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.9、A【解題分析】利用三個公理及其推論逐項判斷后可得正確的選項.【題目詳解】對于①,三個不共線的點可以確定一個平面,所以①不正確;對于②,一條直線和直線外一點可以確定一個平面,所以②不正確;對于③,若三點共線了,四點一定共面,所以③正確;對于④,當三條平行線共面時,只能確定一個平面,所以④不正確.故選:A.10、C【解題分析】根據(jù)對數(shù)型復(fù)合函數(shù)的性質(zhì)計算可得;【題目詳解】解:因為函數(shù)的值域為,所以的最小值為,所以;故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】∵,∴,解得答案:12、##【解題分析】由扇形面積公式可直接求得結(jié)果.【題目詳解】扇形面積.故答案為:.13、【解題分析】由是定義域在上的奇函數(shù),根據(jù)奇函數(shù)的性質(zhì),可推得的解析式.【題目詳解】當時,2,即,設(shè),則,,又為奇函數(shù),,所以在R上的解析式為.故答案為:.14、5【解題分析】,,三點共線,,即,解得,故答案為.15、①.②.##【解題分析】算出點從最高點到第一次入水的圓心角,即可求出對應(yīng)時間;由題意求出關(guān)于的表達式,代值運算即可求出對應(yīng).【題目詳解】如圖所示,當?shù)谝淮稳胨畷r到達點,由幾何關(guān)系知,又圓的半徑為3,故,此時輪子旋轉(zhuǎn)的圓心角為:,故;由題可知,即,當時,.故答案為:;16、【解題分析】利用三角函數(shù)定義求出、的值,結(jié)合誘導(dǎo)公式可求得所求代數(shù)式的值.【題目詳解】由三角函數(shù)的定義可得,,因此,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解題分析】(1)求出點A與直線的距離即可得出圓的半徑,由圓心與半徑寫出圓的標準方程;(2)分斜率存在與不存在兩種情況討論,當斜率存在時,點斜式設(shè)出直線方程,由弦長及半徑可求出弦心距,再利用點到直線距離即可求解,當斜率不存在時驗證是否滿足條件即可.【題目詳解】(1)設(shè)圓的半徑為,因為圓與直線:相切,,∴圓的方程為.(2)①當直線與軸垂直時,易知符合題意;②當直線與軸不垂直時,設(shè)直線的方程為,即.由題意,,,則由得,∴直線為:,故直線的方程為或.18、(1)證明見解析(2)【解題分析】(1)設(shè),化簡計算并判斷正負即可得出;(2)根據(jù)單調(diào)性即可求解.【小問1詳解】設(shè),,因為,所以,,則,即,所以函數(shù)在上是增函數(shù);【小問2詳解】由(1)可知,在單調(diào)遞增,所以,所以在的值域為.19、(1);(2)為減函數(shù);證明見解析【解題分析】(1)根據(jù)奇函數(shù)的定義,即可求出;(2)利用定義證明單調(diào)性【題目詳解】解:(1),由得,解得另解:由,令得代入得:驗證,當時,,滿足題意(2)為減函數(shù)證明:由(1)知,在上任取兩不相等的實數(shù),,且,,由為上的增函數(shù),,,,,則,函數(shù)為減函數(shù)【題目點撥】定義法證明函數(shù)單調(diào)性的步驟:(1)取值;(2)作差;(3)定號;(4)下結(jié)論20、(1)3(2)【解題分析】(1)利用求得.(2)結(jié)合指數(shù)函數(shù)的單調(diào)性求得實數(shù)的取值范圍.【小問1詳解】依題意且,【小問2詳解】在R上是增函數(shù)且所求的取值范圍是21、(1);(2)或;(3)【解題分析】(1)先求出二次函數(shù)的圖象與坐標軸的三個交點的坐標,然后根據(jù)待定系數(shù)法求解可得圓的標準方程;(2)根據(jù)圓心到直線的距離等于半徑可得實數(shù)的值;(3)結(jié)合弦長公式可得所求實數(shù)的值【題目詳解】(1)在中,令,可得;令,可得或所以三個交點分別為,,,設(shè)圓的方程為,將三個點的坐標代入上式得,解得,所以圓的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科貿(mào)職業(yè)學(xué)院《物理化學(xué)實驗上》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東警官學(xué)院《西方哲學(xué)原著》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東交通職業(yè)技術(shù)學(xué)院《材料科學(xué)與工程專業(yè)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東技術(shù)師范大學(xué)《勞動教育2》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東海洋大學(xué)《建設(shè)工程項目管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 防突培訓(xùn)課件
- 培訓(xùn)課件內(nèi)容分析
- 小學(xué)生讀名著分享課件
- 廣東碧桂園職業(yè)學(xué)院《人工智能技術(shù)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 共青科技職業(yè)學(xué)院《機械CAD》2023-2024學(xué)年第一學(xué)期期末試卷
- 安全生產(chǎn)事故舉報獎勵制度
- 冠心病健康教育完整版課件
- 國家開放大學(xué)《理工英語1》單元自測8試題答案
- 重癥患者的容量管理課件
- 期貨基礎(chǔ)知識TXT
- 六年級上冊道德與法治課件-第一單元 我們的守護者 復(fù)習課件-人教部編版(共12張PPT)
- 《尖利的物體會傷人》安全教育課件
- 安全管理體系及保證措施
- 大學(xué)生自主創(chuàng)業(yè)證明模板
- 啟閉機試運行記錄-副本
- 少兒美術(shù)畫畫 童畫暑假班 7歲-8歲 重彩 《北京烤鴨》
評論
0/150
提交評論