2024屆福建省閩侯第四中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
2024屆福建省閩侯第四中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
2024屆福建省閩侯第四中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
2024屆福建省閩侯第四中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
2024屆福建省閩侯第四中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建省閩侯第四中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在長為12cm的線段AB上任取一點C.現(xiàn)作一矩形,鄰邊長分別等于線段AC,CB的長,則該矩形面積大于20cm2的概率為A. B.C. D.2.若函數(shù)在上單調(diào)遞增,則實數(shù)a的取值范圍是()A. B.C. D.3.已知函數(shù)的值域為R,則實數(shù)的取值范圍是()A. B.C. D.4.函數(shù)的零點個數(shù)是A.0 B.1C.2 D.35.函數(shù)的圖象可由函數(shù)的圖像()A.向左平移個單位得到 B.向右平移個單位得到C.向左平移個單位得到 D.向右平移個單位得到6.函數(shù)的最大值為A.2 B.C. D.47.已知函數(shù)的圖象的對稱軸為直線,則()A. B.C. D.8.中國的5G技術(shù)領(lǐng)先世界,5G技術(shù)的數(shù)學(xué)原理之一便是著名的香農(nóng)公式:.它表示:在受噪聲干擾的信道中,最大信息傳遞速度C取決于信道帶寬W,信道內(nèi)信號的平均功率S,信道內(nèi)部的高斯噪聲功率N的大小,其中叫做信噪比.當信噪比較大時,公式中真數(shù)中的1可以忽略不計.按照香農(nóng)公式,若不改變帶寬W,而將信噪比從1000提升至8000,則C大約增加了()()A.10% B.30%C.60% D.90%9.定義域為的函數(shù)滿足,當時,,若時,對任意的都有成立,則實數(shù)的取值范圍是()A. B.C. D.10.已知某棱錐的三視圖如圖所示,則該棱錐的表面積為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知定義在上的偶函數(shù)在上遞減,且,則不等式的解集為__________12.已知正實數(shù)滿足,則當__________時,的最小值是__________13.___________,__________14.已知,則的值為__________15.若,,,則的最小值為___________.16.不等式的解集是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)計算:;(2)化簡:18.求同時滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長為的圓的方程19.如圖,在棱長為2的正方體中,E,F(xiàn)分別是棱的中點.(1)證明:平面;(2)求三棱錐的體積.20.證明:(1);(2)21.如圖,某公園摩天輪的半徑為40,圓心O距地面的高度為50,摩天輪做勻速轉(zhuǎn)動,每3轉(zhuǎn)一圈,摩天輪上的點P的起始位置在距地面最近處.(1)已知在時點P距離地面的高度為,求時,點P距離地面的高度;(2)當離地面以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中在點P處有多少時間可以看到公園的全貌.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】設(shè)AC=x,則BC=12-x(0<x<12)矩形的面積S=x(12-x)>20∴x2-12x+20<0∴2<x<10由幾何概率的求解公式可得,矩形面積大于20cm2的概率考點:幾何概型2、A【解題分析】將寫成分段函數(shù)的形式,根據(jù)單調(diào)性先分析每一段函數(shù)需要滿足的條件,同時注意分段點處函數(shù)值關(guān)系,由此求解出的取值范圍.【題目詳解】因為,所以,當在上單調(diào)遞增時,,所以,當在上單調(diào)遞增時,,所以,且,所以,故選:A.【題目點撥】思路點睛:根據(jù)分段函數(shù)單調(diào)性求解參數(shù)范圍的步驟:(1)先分析每一段函數(shù)的單調(diào)性并確定出參數(shù)的初步范圍;(2)根據(jù)單調(diào)性確定出分段點處函數(shù)值的大小關(guān)系;(3)結(jié)合(1)(2)求解出參數(shù)的最終范圍.3、C【解題分析】分段函數(shù)值域為R,在x=1左側(cè)值域和右側(cè)值域并集為R.【題目詳解】當,∴當時,,∵的值域為R,∴當時,值域需包含,∴,解得,故選:C.4、C【解題分析】將原問題轉(zhuǎn)化為函數(shù)交點個數(shù)的問題即可確定函數(shù)的零點個數(shù).【題目詳解】函數(shù)的零點個數(shù)即函數(shù)與函數(shù)交點的個數(shù),繪制函數(shù)圖象如圖所示,觀察可得交點個數(shù)為2,則函數(shù)的零點個數(shù)是2.本題選擇C選項.【題目點撥】本題主要考查函數(shù)零點的定義,數(shù)形結(jié)合的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.5、D【解題分析】異名函數(shù)圖像的平移先化同名,然后再根據(jù)“左加右減,上加下減”法則進行平移.【題目詳解】變換到,需要向右平移個單位.故選:D【題目點撥】函數(shù)圖像平移異名化同名的公式:,.6、B【解題分析】根據(jù)兩角和的正弦公式得到函數(shù)的解析式,結(jié)合函數(shù)的性質(zhì)得到結(jié)果.【題目詳解】函數(shù)根據(jù)兩角和的正弦公式得到,因為x根據(jù)正弦函數(shù)的性質(zhì)得到最大值為.故答案為B.【題目點撥】這個題目考查了三角函數(shù)的兩角和的正弦公式的應(yīng)用,以及函數(shù)的圖像的性質(zhì)的應(yīng)用,題型較為基礎(chǔ).7、A【解題分析】根據(jù)二次函數(shù)的圖像的開口向上,對稱軸為,可得,且函數(shù)在上遞增,再根據(jù)函數(shù)的對稱性以及單調(diào)性即可求解.【題目詳解】二次函數(shù)的圖像的開口向上,對稱軸為,且函數(shù)在上遞增,根據(jù)二次函數(shù)的對稱性可知,又,所以,故選:A【題目點撥】本題考查了二次函數(shù)的單調(diào)性以及對稱性比較函數(shù)值的大小,屬于基礎(chǔ)題.8、B【解題分析】根據(jù)所給公式、及對數(shù)的運算法則代入計算可得;【題目詳解】解:當時,,當時,,∴,∴約增加了30%.故選:B9、B【解題分析】由可求解出和時,的解析式,從而得到在上的最小值,從而將不等式轉(zhuǎn)化為對恒成立,利用分離變量法可將問題轉(zhuǎn)化為,利用二次函數(shù)單調(diào)性求得在上的最大值,從而得到,進而求得結(jié)果.【題目詳解】當時,時,當時,,時,時,,即對恒成立即:對恒成立令,,,解得:故選:B10、D【解題分析】根據(jù)三視圖可知,幾何體是一條側(cè)棱垂直于底面的四棱錐,底面是邊長為的正方形,如下圖所示,該幾何體的四個側(cè)面均為直角三角形,側(cè)面積,底面積,所以該幾何體的表面積為,故選D.考點:三視圖與表面積.【易錯點睛】本題考查三視圖與表面積,首先應(yīng)根據(jù)三視圖還原幾何體,需要一定的空間想象能力,另外解本題時,也可以將幾何體置于正方體中,這樣便于理解、觀察和計算.根據(jù)三視圖求表面積一定要弄清點、線、面的平行和垂直關(guān)系,能根據(jù)三視圖中的數(shù)據(jù)找出直觀圖中的數(shù)據(jù),從而進行求解,考查學(xué)生空間想象能力和計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】因為,而為偶函數(shù),故,故原不等式等價于,也就是,所以即,填點睛:對于偶函數(shù),有.解題時注意利用這個性質(zhì)把未知區(qū)間的性質(zhì)問題轉(zhuǎn)化為已知區(qū)間上的性質(zhì)問題去處理12、①.②.6【解題分析】利用基本不等式可知,當且僅當“”時取等號.而運用基本不等式后,結(jié)合二次函數(shù)的性質(zhì)可知恰在時取得最小值,由此得解.【題目詳解】解:由題意可知:,即,當且僅當“”時取等號,,當且僅當“”時取等號.故答案為:,6.【題目點撥】本題考查基本不等式的應(yīng)用,同時也考查了配方法及二次函數(shù)的圖像及性質(zhì),屬于基礎(chǔ)題.13、①.##-0.5②.2【解題分析】根據(jù)誘導(dǎo)公式計算即可求出;根據(jù)對數(shù)運算性質(zhì)可得【題目詳解】由題意知,;故答案為:14、【解題分析】答案:15、3【解題分析】利用基本不等式常值代換即可求解.【題目詳解】因為,,,所以,當且僅當,即時,等號成立,所以的最小值為3,故答案為:316、【解題分析】先利用指數(shù)函數(shù)的單調(diào)性得,再解一元二次不等式即可【題目詳解】故答案為【題目點撥】本題考查了指數(shù)不等式和一元二次不等式的解法,屬中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】(1)由題意利用對數(shù)的運算性質(zhì),計算求得結(jié)果(2)由題意利用誘導(dǎo)公式,計算求得結(jié)果【題目詳解】解:(1)(2)18、或.【解題分析】根據(jù)題意,設(shè)圓心為,圓被直線截得的弦為為的中點,連結(jié).由垂徑定理和點到直線的距離公式,建立關(guān)于的方程并解出值,即可得到滿足條件的圓的標準方程【題目詳解】試題解析:設(shè)所求的圓的方程是,則圓心到直線的距離為,①由于所求的圓與x軸相切,所以②又因為所求圓心在直線上,則③聯(lián)立①②③,解得,或.故所求的圓的方程是或.19、(1)證明見解析(2)【解題分析】(1)連接,設(shè),連接EF,EO,利用中位線和正方體的性質(zhì)證明四邊形是平行四邊形,進而可證平面;(2)由平面可得點F,到平面的距離相等,則,進而求得三棱錐的體積即可【題目詳解】(1)證明:連接,設(shè),連接EF,EO,因為E,F分別是棱的中點,所以,,因為正方體,所以,,所以,,所以四邊形是平行四邊形,所以,又平面,平面,所以平面(2)由(1)可得點F,到平面的距離相等,所以,又三棱錐的高為棱長,即,,所以.所以【題目點撥】本題考查線面平行的證明,考查三棱錐的體積,考查轉(zhuǎn)化思想20、(1)證明見解析(2)證明見解析【解題分析】(1)利用三角函數(shù)的和差公式,分別將兩邊化簡后即可;(2)利用和2倍角公式構(gòu)造出齊次式,再同時除以即可證明.【小問1詳解】左邊===右邊===左邊=右邊,所以原等式得證.【小問2詳解】故原式得證.21、(1)70;(2)0.5.【解題分析】(1)根據(jù)題意,確定的表達式,代入運算即可;(2)要求,即,解不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論