版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
貴州省遵義第四中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),,的零點依次為,則以下排列正確的是()A. B.C. D.2.已知函數(shù),若關(guān)于x的方程有五個不同實根,則m的值是()A.0或 B.C.0 D.不存在3.已知,則()A. B.C. D.4.已知角的終邊經(jīng)過點,則A. B.C. D.5.已知函數(shù)是定義域為R的奇函數(shù),且,當(dāng)時,,則等于()A.-2 B.2C. D.-6.定義運算:,則函數(shù)的圖像是()A. B.C. D.7.已知函數(shù)是定義域上的遞減函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.8.與2022°終邊相同的角是()A. B.C.222° D.142°9.已知命題,,則p的否定是()A., B.,C., D.,10.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則二、填空題:本大題共6小題,每小題5分,共30分。11.若集合有且僅有兩個不同的子集,則實數(shù)=_______;12.已知若,則().13.圓柱的側(cè)面展開圖是邊長分別為的矩形,則圓柱的體積為_____________14.已知函數(shù)(為常數(shù))是奇函數(shù).(1)求的值與函數(shù)的定義域.(2)若當(dāng)時,恒成立.求實數(shù)的取值范圍.15.已知,,,則,,的大小關(guān)系是______.(用“”連接)16.某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1,兩街道相交的點稱為格點.若以互相垂直的兩條街道為坐標(biāo)軸建立平面直角坐標(biāo)系,根據(jù)垃圾分類要求,下述格點為垃圾回收點:,,,,,.請確定一個格點(除回收點外)___________為垃圾集中回收站,使這6個回收點沿街道到回收站之間路程的和最短.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐的底面是菱形,,平面,是的中點.(1)求證:平面平面;(2)棱上是否存在一點,使得平面?若存在,確定的位置并加以證明;若不存在,請說明理由.18.如圖,直三棱柱的底面是邊長為2的正三角形,分別是的中點(1)證明:平面平面;(2)若直線與平面所成的角為,求三棱錐的體積19.已知,.(1)求的值;(2)求的值.20.假設(shè)你家訂了一份報紙,送報人可能在早上6點—8點之間把報紙送到你家,你每天離家去工作的時間在早上7點—9點之間.問:離家前不能看到報紙(稱事件)的概率是多少?(須有過程)21.要建造一段5000m的高速公路,工程隊需要把600人分成兩組,一組完成一段2000m的軟土地帶公路的建造任務(wù),同時另一組完成剩下的3000m的硬土地帶公路的建造任務(wù).據(jù)測算,軟、硬土地每米公路的工程量分別是50人/天和30人/天,設(shè)在軟土地帶工作的人數(shù)x人,在軟土、硬土地帶筑路的時間分別記為,(1)求,;(2)求全隊的筑路工期;(3)如何安排兩組人數(shù),才能使全隊筑路工期最短?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】在同一直角坐標(biāo)系中畫出,,與的圖像,數(shù)形結(jié)合即可得解【題目詳解】函數(shù),,的零點依次為,在同一直角坐標(biāo)系中畫出,,與的圖像如圖所示,由圖可知,,,滿足故選:B.【題目點撥】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解2、C【解題分析】令,做出的圖像,根據(jù)圖像確定至多存在兩個的值,使得與有五個交點時,的值或取值范圍,進(jìn)而轉(zhuǎn)為求方程在的值或取值范圍有解,利用一元二次方程根的分布,即可求解.【題目詳解】做出圖像如下圖所示:令,方程,為,當(dāng)時,方程沒有實數(shù)解,當(dāng)或時,方程有2個實數(shù)解,當(dāng),方程有4個實數(shù)解,當(dāng)時,方程有3個解,要使方程方程有五個實根,則方程有一根為1,另一根為0或大于1,當(dāng)時,有或,當(dāng)時,,或,滿足題意,當(dāng)時,,或,不合題意,所以.故選:C.【題目點撥】本題考查復(fù)合方程的解,換元法是解題的關(guān)鍵,數(shù)形結(jié)合是解題的依賴,或直接用選項中的值代入驗證,屬于較難題.3、D【解題分析】先求出,再分子分母同除以余弦的平方,得到關(guān)于正切的關(guān)系式,代入求值.【題目詳解】由得,,所以故選:D4、D【解題分析】由任意角的三角函數(shù)定義列式求解即可.【題目詳解】由角終邊經(jīng)過點,可得.故選D.【題目點撥】本題主要考查了任意角三角函數(shù)的定義,屬于基礎(chǔ)題.5、B【解題分析】根據(jù)奇函數(shù)性質(zhì)和條件,求得函數(shù)的周期為8,再化簡即可.【題目詳解】函數(shù)是定義域為R的奇函數(shù),則有:又,則則有:可得:故,即的周期為則有:故選:B6、A【解題分析】先求解析式,再判斷即可詳解】由題意故選:A【題目點撥】本題考查函數(shù)圖像的識別,考查指數(shù)函數(shù)性質(zhì),是基礎(chǔ)題7、B【解題分析】由指數(shù)函數(shù)的單調(diào)性知,即二次函數(shù)是開口向下的,利用二次函數(shù)的對稱軸與1比較,再利用分段函數(shù)的單調(diào)性,可以構(gòu)造一個關(guān)于a的不等式,解不等式即可得到實數(shù)a的取值范圍【題目詳解】函數(shù)是定義域上的遞減函數(shù),當(dāng)時,為減函數(shù),故;當(dāng)時,為減函數(shù),由,得,開口向下,對稱軸為,即,解得;當(dāng)時,由分段函數(shù)單調(diào)性知,,解得;綜上三個條件都滿足,實數(shù)a的取值范圍是故選:B.【題目點撥】易錯點睛:本題考查分段函數(shù)單調(diào)性,函數(shù)單調(diào)性的性質(zhì),其中解答時易忽略函數(shù)在整個定義域上為減函數(shù),則在分界點處()時,前一段的函數(shù)值不小于后一段的函數(shù)值,考查學(xué)生的分析能力與運算能力,屬于中檔題.8、C【解題分析】終邊相同的角,相差360°的整數(shù)倍,據(jù)此即可求解.【題目詳解】∵2022°=360°×5+222°,∴與2022°終邊相同的角是222°.故選:C.9、D【解題分析】由否定的定義寫出即可.【題目詳解】p的否定是,.故選:D10、D【解題分析】A項,可能相交或異面,當(dāng)時,存在,,故A項錯誤;B項,可能相交或垂直,當(dāng)
時,存在,,故B項錯誤;C項,可能相交或垂直,當(dāng)
時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關(guān)系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質(zhì);直線與平面、平面與平面垂直的判定與性質(zhì).二、填空題:本大題共6小題,每小題5分,共30分。11、或.【解題分析】根據(jù)集合的子集個數(shù)確定出方程解的情況,由此求解出參數(shù)值.【題目詳解】因為集合僅有兩個不同子集,所以集合中僅有個元素,當(dāng)時,,所以,滿足要求;當(dāng)時,,所以,此時方程解為,即,滿足要求,所以或,故答案:或.12、【解題分析】利用平面向量平行的坐標(biāo)表示進(jìn)行求解.【題目詳解】因為,所以,即;故答案:.【題目點撥】本題主要考查平面向量平行的坐標(biāo)表示,兩向量平行坐標(biāo)分量對應(yīng)成比例,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).13、或【解題分析】有兩種形式的圓柱的展開圖,分別求出底面半徑和高,分別求出體積.【題目詳解】圓柱的側(cè)面展開圖是邊長為2a與a的矩形,當(dāng)母線為a時,圓柱的底面半徑是,此時圓柱體積是;當(dāng)母線為2a時,圓柱的底面半徑是,此時圓柱的體積是,綜上所求圓柱的體積是:或,故答案為或;本題考查圓柱的側(cè)面展開圖,圓柱的體積,容易疏忽一種情況,導(dǎo)致錯誤.14、(1),定義域為或;(2).【解題分析】(1)根據(jù)函數(shù)是奇函數(shù),得到,求出,再解不等式,即可求出定義域;(2)先由題意,根據(jù)對數(shù)函數(shù)的性質(zhì),求出的最小值,即可得出結(jié)果.【題目詳解】(1)因為函數(shù)是奇函數(shù),所以,所以,即,所以,令,解得或,所以函數(shù)的定義域為或;(2),當(dāng)時,所以,所以.因為,恒成立,所以,所以的取值范圍是.【題目點撥】本題主要考查由函數(shù)奇偶性求參數(shù),考查求具體函數(shù)的定義域,考查含對數(shù)不等式,屬于常考題型.15、【解題分析】結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)的知識確定正確答案.【題目詳解】,,所以故答案為:16、【解題分析】根據(jù)題意,設(shè)滿足題意得格點為,這6個回收點沿街道到回收站之間路程的和為,故,再分別求和的最小值時的即可得答案.【題目詳解】解:設(shè)滿足題意得格點為,這6個回收點沿街道到回收站之間路程和為,則,令,由于其去掉絕對值為一次函數(shù),故其最小值在區(qū)間端點值,所以代入得,所以當(dāng)時,取得最小值,同理,令,代入得所以當(dāng)或時,取得最小值,所以當(dāng),或時,這6個回收點沿街道到回收站之間路程的和最小,由于是一個回收點,故舍去,所以當(dāng),這6個回收點沿街道到回收站之間路程的和最小,故格點為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)點為的中點【解題分析】(1)證面面垂直,可先由線面垂直入手即,進(jìn)而得到面面垂直;(2)通過構(gòu)造平行四邊形,得到線面平行.解析:(1)連接,因為底面是菱形,,所以為正三角形.因為是的中點,所以,因為面,,∴,因為,,,所以.又,所以面⊥面.(2)當(dāng)點為的中點時,∥面.事實上,取的中點,的中點,連結(jié),,∵為三角形的中位線,∴∥且,又在菱形中,為中點,∴∥且,∴∥且,所以四邊形平行四邊形.所以∥,又面,面,∴∥面,結(jié)論得證.點睛:這個題目考查了線面平行的證明,線面垂直的證明.一般證明線面平行是從線線平行入手,通過構(gòu)造平行四邊形,三角形中位線,梯形底邊等,找到線線平行,再證線面平行.證明線線垂直也可以從線面垂直入手.18、(Ⅰ)見解析;(Ⅱ).【解題分析】(1)由面面垂直的判定定理很容易得結(jié)論;(2)所求三棱錐底面積容易求得,是本題轉(zhuǎn)化為求三棱錐的高,利用直線與平面所成的角為,作出線面角,進(jìn)而可求得的值,則可得的長試題解析:(1)如圖,因為三棱柱是直三棱柱,所以,又是正三角形的邊的中點,所以又,因此平面而平面,所以平面平面(2)設(shè)的中點為,連結(jié),因為是正三角形,所以又三棱柱是直三棱柱,所以因此平面,于是為直線與平面所成的角,由題設(shè),,所以在中,,所以故三棱錐的體積考點:直線與平面垂直的判定定理;直線與平面所成的角;幾何體的體積.19、(1);(2).【解題分析】(1)利用誘導(dǎo)公式直接化簡即可,然后弦化切;(2)由(1)知,,對齊次式進(jìn)行弦化切求值.【題目詳解】(1)∵而,∴∵,∴,∴,∴.(2)..【題目點撥】利用三角公式求三角函數(shù)值的關(guān)鍵:(1)角的范圍的判斷;(2)選擇合適的公式進(jìn)行化簡求值20、.【解題分析】設(shè)送報人到達(dá)的時間為X,小王離家去工作的時間為Y,(X,Y)可以看成平面中的點,試驗的全部結(jié)果所構(gòu)成的區(qū)域為Ω={(x,y)|6≤X≤8,7≤Y≤9}一個正方形區(qū)域,求出其面積,事件A表示小王離家前不能看到報紙,所構(gòu)成的區(qū)域為A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}
求出其面積,根據(jù)幾何概型的概率公式解之即可;試題解析:如圖,設(shè)送報人到達(dá)的時間為,小王離家去工作的時間為.(,)可以看成平面中的點,試驗的全部結(jié)果所構(gòu)成的區(qū)域為一個正方形區(qū)域,面積為,事件表示小王離家前不能看到報紙,所構(gòu)成的區(qū)域為即圖中的陰影部分,面積為.這是一個幾何概型,所以.答:小王離家前不能看到報紙的概率是0.125.點睛:(1)當(dāng)試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024校服生產(chǎn)與校園文化衫銷售及售后維護(hù)服務(wù)合同2篇
- 2車輛租賃公司和個人之間的租車協(xié)議2024
- 2024物業(yè)寵物托管中心與寵物服務(wù)商合同
- 2024年網(wǎng)絡(luò)安全技術(shù)合作合同協(xié)議3篇
- 2024標(biāo)準(zhǔn)化房產(chǎn)居間業(yè)務(wù)協(xié)議一
- 2024年網(wǎng)絡(luò)游戲開發(fā)與運營合同:虛擬物品與玩家權(quán)益保護(hù)
- 鄭州師范學(xué)院《素描表現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江旅游職業(yè)學(xué)院《專業(yè)外語(秘書)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中南大學(xué)《生化工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 《保護(hù)性拆除》課件
- 蘇北四市(徐州、宿遷、淮安、連云港)2025屆高三第一次調(diào)研考試(一模)語文試卷(含答案)
- 第7課《中華民族一家親》(第一課時)(說課稿)2024-2025學(xué)年統(tǒng)編版道德與法治五年級上冊
- 2025年進(jìn)出口貿(mào)易公司發(fā)展戰(zhàn)略和經(jīng)營計劃
- 2025年上海市嘉定區(qū)高三語文一模作文8篇范文:人們往往用“有用”作為判別事物并做出選擇的重要標(biāo)準(zhǔn)
- 2025年行政執(zhí)法人員執(zhí)法資格考試必考題庫及答案(共232題)
- 網(wǎng)站建設(shè)合同范本8篇
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 玻璃鱗片施工技術(shù)規(guī)范
- 操作規(guī)程管理制度的內(nèi)容及示例
- 初中物理實驗記錄表
- 初中學(xué)生成績通知單
評論
0/150
提交評論