版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
四川省眉山實驗高級中學2024屆高一數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法中,正確的是()A.若,則B.函數(shù)與函數(shù)是同一個函數(shù)C.設點是角終邊上的一點,則D.冪函數(shù)的圖象過點,則2.已知奇函數(shù)fx在R上是增函數(shù),若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b3.下列四組函數(shù)中,表示同一個函數(shù)的一組是()A.,B.,C.,D.,4.已知,則()A. B.C. D.5.若指數(shù)函數(shù),則有()A.或 B.C. D.且6.計算A.-2 B.-1C.0 D.17.在平行四邊形ABCD中,E為AB中點,BD交CE于F,則=()A. B.C. D.8.若正實數(shù),滿足,則的最小值為()A. B.C. D.9.下列函數(shù)中,最小正周期為且圖象關(guān)于原點對稱的函數(shù)是()A. B.C. D.10.已知集合,集合,則圖中陰影部分表示的集合為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某高校甲、乙、丙、丁4個專業(yè)分別有150,150,400,300名學生.為了了解學生的就業(yè)傾向,用分層隨機抽樣的方法從這4個專業(yè)的學生中抽取40名學生進行調(diào)查,應在丁專業(yè)中抽取的學生人數(shù)為______12.已知,則____________13.函數(shù)的定義域為___14.已知,是相互獨立事件,且,,則______15.設函數(shù)f(x)的定義域為R,f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),當x∈[1,2]時,f(x)=ax2+b.若f(0)+f(3)=6,則f()=____________.16.等于_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的部分圖象如下圖所示(1)求函數(shù)的解析式;(2)討論函數(shù)在上的單調(diào)性18.已知函數(shù)f(x)=sinωx-cosωx(ω>0)的最小正周期為π.(1)求函數(shù)y=f(x)圖象對稱軸方程;(2)討論函數(shù)f(x)在上的單調(diào)性.19.已知函數(shù)圖象的一條對稱軸方程為,且其圖象上相鄰兩個零點的距離為.(1)求的解析式;(2)若對,不等式恒成立,求實數(shù)m的取值范圍.20.(1)已知,求的值;(2)計算:.21.已知函數(shù),(,且)(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并說明理由;(3)設,解不等式
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】A選項,舉出反例;B選項,兩函數(shù)定義域不同;C選項,利用三角函數(shù)定義求解;D選項,待定系數(shù)法求出解析式,從而得到答案.【題目詳解】A選項,當時,滿足,而,故A錯誤;B選項,定義域為R,定義域為,兩者不是同一個函數(shù),B錯誤;C選項,,C錯誤;D選項,設,將代入得:,解得:,所以,D正確.故選:D2、C【解題分析】由題意:a=f-且:log2據(jù)此:log2結(jié)合函數(shù)的單調(diào)性有:flog即a>b>c,c<b<a.本題選擇C選項.【考點】指數(shù)、對數(shù)、函數(shù)的單調(diào)性【名師點睛】比較大小是高考常見題,指數(shù)式、對數(shù)式的比較大小要結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù),借助指數(shù)函數(shù)和對數(shù)函數(shù)的圖象,利用函數(shù)的單調(diào)性進行比較大小,特別是靈活利用函數(shù)的奇偶性和單調(diào)性數(shù)形結(jié)合不僅能比較大小,還可以解不等式.3、B【解題分析】根據(jù)相等函數(shù)的判定方法,逐項判斷,即可得出結(jié)果.【題目詳解】A選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故A錯;B選項,因為的定義域為,的定義域也為,且與對應關(guān)系一致,是同一函數(shù),故B正確;C選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故C錯;D選項,因為的定義域為,的定義域為,定義域不同,不是同一函數(shù),故D錯.故選:B.4、C【解題分析】因為,所以;因為,,所以,所以.選C5、C【解題分析】根據(jù)指數(shù)函數(shù)的概念,由所給解析式,可直接求解.【題目詳解】因為是指數(shù)函數(shù),所以,解得.故選:C6、C【解題分析】.故選C.7、A【解題分析】利用向量加法法則把轉(zhuǎn)化為,再利用數(shù)量關(guān)系把化為,從而可表示結(jié)果.【題目詳解】解:如圖,∵平行四邊形ABCD中,E為AB中點,∴,∴DF,∴,故選A【題目點撥】此題考查了向量加減法則,平面向量基本定理,難度不大8、B【解題分析】由基本不等式有,令,將已知等式轉(zhuǎn)化為關(guān)于的一元二次不等式,解不等式即可得答案.【題目詳解】解:由題意,正實數(shù)滿足,則,令,可得,即,解得,或(舍去),所以當且僅當時,取得最小值2,故選:B.9、A【解題分析】求出函數(shù)的周期,函數(shù)的奇偶性,判斷求解即可【題目詳解】解:y=cos(2x)=﹣sin2x,是奇函數(shù),函數(shù)的周期為:π,滿足題意,所以A正確y=sin(2x)=cos2x,函數(shù)是偶函數(shù),周期為:π,不滿足題意,所以B不正確;y=sin2x+cos2xsin(2x),函數(shù)是非奇非偶函數(shù),周期為π,所以C不正確;y=sinx+cosxsin(x),函數(shù)是非奇非偶函數(shù),周期為2π,所以D不正確;故選A考點:三角函數(shù)的性質(zhì).10、B【解題分析】由陰影部分表示的集合為,然后根據(jù)集合交集的概念即可求解.【題目詳解】因為陰影部分表示的集合為由于.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、12【解題分析】利用分層抽樣的性質(zhì)直接求解詳解】由題意應從丁專業(yè)抽取的學生人數(shù)為:故答案為:1212、##0.8【解題分析】利用同角三角函數(shù)的基本關(guān)系,將弦化切再代入求值【題目詳解】解:,則,故答案為:13、【解題分析】解不等式組即得解.【題目詳解】解:由題得且,所以函數(shù)的定義域為.故答案為:14、【解題分析】由相互獨立事件的性質(zhì)和定義求解即可【題目詳解】因為,是相互獨立事件,所以,也是相互獨立事件,因為,,所以,故答案為:15、【解題分析】由f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),可得,,再結(jié)合已知的解析式可得,然后結(jié)合已知可求出,從而可得當時,,進而是結(jié)合前面的式子可求得答案【題目詳解】因為f(x+1)為奇函數(shù),所以的圖象關(guān)于點對稱,所以,且因為f(x+2)為偶函數(shù),所以的圖象關(guān)于直線對稱,,所以,即,所以,即,當x∈[1,2]時,f(x)=ax2+b,則,因為,所以,得,因為,所以,所以當時,,所以,故答案為:16、【解題分析】直接利用誘導公式即可求解.【題目詳解】由誘導公式得:.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)在,上單調(diào)遞減,在,和,上單調(diào)遞增【解題分析】(1)由圖知,,最小正周期,由,求得的值,再將點,代入函數(shù)的解析式中,求出的值,即可;(2)由,,知,,再結(jié)合正弦函數(shù)的單調(diào)性,即可得解【小問1詳解】解:由圖知,,最小正周期,因為,所以,將點,代入函數(shù)的解析式中,得,所以,,即,,因為,所以,故函數(shù)的解析式為;【小問2詳解】解:因為,,所以,,令,則,,因為函數(shù)在,上單調(diào)遞減,在,和,上單調(diào)遞增,令,得,令,得,令,得,所以在,上單調(diào)遞減,在,和,上單調(diào)遞增18、(1);(2)單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.【解題分析】(1)先化簡得函數(shù)f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函數(shù)y=f(x)圖象的對稱軸方程.(2)先求函數(shù)的單調(diào)遞增區(qū)間為(k∈Z),再給k取值,得到函數(shù)f(x)在上的單調(diào)性.【題目詳解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x-=kπ+(k∈Z),得x=+(k∈Z),故函數(shù)f(x)的對稱軸方程為x=+(k∈Z).(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函數(shù)f(x)的單調(diào)遞增區(qū)間為(k∈Z).注意到x∈,令k=0,得函數(shù)f(x)在上的單調(diào)遞增區(qū)間為;其單調(diào)遞減區(qū)間為.【題目點撥】(1)本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學生對這些知識的掌握說和分析推理能力.(2)一般利用復合函數(shù)的單調(diào)性原理求復合函數(shù)的單調(diào)區(qū)間,首先是對復合函數(shù)進行分解,接著是根據(jù)復合函數(shù)的單調(diào)性原理分析出分解出的函數(shù)的單調(diào)性,最后根據(jù)分解函數(shù)的單調(diào)性求出復合函數(shù)的單調(diào)區(qū)間.19、(1)(2)【解題分析】(1)由題意可得周期為,則可求出的值,再由一條對稱軸方程為,可得,可求出的值,從而可求得解析式,(2)由題意得對恒成立,所以利用三角函數(shù)的性質(zhì)求出即可,從而可求出實數(shù)m的取值范圍【小問1詳解】因為圖象上相鄰兩個零點的距離為,所以周期為,所以,得,所以,因為圖象的一條對稱軸方程為,所以,即,所以,因為,所以,所以【小問2詳解】由(1)得對恒成立,因為,所以,所以,則,所以,解得,所以實數(shù)m的取值范圍為20、(1),(2).【解題分析】(1)把所給的式子進行平方運算,即可求出的值,找到和的關(guān)系即可求出的值;(2)化根式為分數(shù)指數(shù)冪,把對數(shù)式的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度大棚蔬菜種植與農(nóng)業(yè)休閑農(nóng)業(yè)項目合作協(xié)議2篇
- 二零二五年度南京市房地產(chǎn)經(jīng)紀行業(yè)勞務派遣及銷售服務合同
- 2025年度豬場生物安全防護與防疫物資供應合同4篇
- 二手房地產(chǎn)交易安全保障與監(jiān)管合同
- 2025年水果采摘與農(nóng)家樂特色農(nóng)產(chǎn)品銷售合同3篇
- 二零二五年度企業(yè)股權(quán)激勵計劃轉(zhuǎn)讓合同
- 2025年大數(shù)據(jù)處理與分析軟件服務采購協(xié)議3篇
- 二零二五年建筑資質(zhì)掛靠與工程進度調(diào)整服務協(xié)議3篇
- 2025年度二手房買賣合同附加物業(yè)管理費結(jié)算協(xié)議3篇
- 二零二五年度大型商業(yè)綜合體工程分包管理協(xié)議2篇
- 四川省高職單招電氣技術(shù)類《電子基礎》歷年考試真題試題庫(含答案)
- 中級半導體分立器件和集成電路裝調(diào)工技能鑒定考試題庫(含答案)
- 2024年江西生物科技職業(yè)學院單招職業(yè)技能測試題庫帶解析答案
- 橋本甲狀腺炎-90天治療方案
- (2024年)安全注射培訓課件
- 2024版《建設工程開工、停工、復工安全管理臺賬表格(流程圖、申請表、報審表、考核表、通知單等)》模版
- 部編版《道德與法治》六年級下冊教材分析萬永霞
- 酒店人防管理制度
- 油田酸化工藝技術(shù)
- 上海高考英語詞匯手冊列表
- 移動商務內(nèi)容運營(吳洪貴)任務五 其他內(nèi)容類型的生產(chǎn)
評論
0/150
提交評論