版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第1講直線與圓綜合問題目錄第一部分:知識強(qiáng)化第二部分:重難點(diǎn)題型突破突破一:直線傾斜角與斜率突破二:兩條直線平行與垂直突破三:直線方程突破四:距離問題突破五:圓的方程突破六:與圓上點(diǎn)有關(guān)的距離最值問題突破七:圓的切線問題突破八:兩圓的公共弦問題突破九:圓的弦長問題第三部分:沖刺重難點(diǎn)特訓(xùn)第一部分:知識強(qiáng)化1、直線斜率的坐標(biāo)公式如果直線經(jīng)過兩點(diǎn)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),那么可得到如下斜率公式:SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),直線與SKIPIF1<0軸垂直,直線的傾斜角SKIPIF1<0,斜率不存在;(2)斜率公式與兩點(diǎn)坐標(biāo)的順序無關(guān),橫縱坐標(biāo)的次序可以同時(shí)調(diào)換;(3)當(dāng)SKIPIF1<0時(shí),斜率SKIPIF1<0,直線的傾斜角SKIPIF1<0,直線與SKIPIF1<0軸重合或者平行。2、兩條不重合直線平行的判定的一般結(jié)論是:SKIPIF1<0或SKIPIF1<0,SKIPIF1<0斜率都不存在.3、兩條直線垂直的一般結(jié)論為:SKIPIF1<0或一條直線的斜率不存在,同時(shí)另一條直線的斜率等于零.4、直線方程①直線SKIPIF1<0過點(diǎn)SKIPIF1<0和斜率SKIPIF1<0(已知一點(diǎn)+斜率):SKIPIF1<0②直線SKIPIF1<0的斜率為SKIPIF1<0且在SKIPIF1<0軸上的縱截距為SKIPIF1<0(已知斜率+縱截距):SKIPIF1<0③直線SKIPIF1<0在SKIPIF1<0軸上的截距為SKIPIF1<0,在SKIPIF1<0軸上的截距為SKIPIF1<0:SKIPIF1<0④直線的一般式方程:SKIPIF1<05、直線系方程(1)平行直線系方程把平面內(nèi)具有相同方向的直線的全體稱為平行直線系.一般地,與直線SKIPIF1<0平行的直線系方程都可表示為SKIPIF1<0(其中SKIPIF1<0為參數(shù)且SKIPIF1<0≠C),然后依據(jù)題設(shè)中另一個(gè)條件來確定SKIPIF1<0的值.(2)垂直直線系方程一般地,與直線SKIPIF1<0垂直的直線系方程都可表示為SKIPIF1<0(其中SKIPIF1<0為參數(shù)),然后依據(jù)題設(shè)中的另一個(gè)條件來確定SKIPIF1<0的值.6、點(diǎn)到直線的距離平面上任意一點(diǎn)SKIPIF1<0到直線SKIPIF1<0:SKIPIF1<0的距離SKIPIF1<0.7、對稱問題(1)點(diǎn)關(guān)于點(diǎn)對稱問題(方法:中點(diǎn)坐標(biāo)公式)求點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對稱點(diǎn)SKIPIF1<0由:SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)點(diǎn)關(guān)于直線對稱問題(聯(lián)立兩個(gè)方程)求點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0:SKIPIF1<0的對稱點(diǎn)SKIPIF1<0①設(shè)SKIPIF1<0中點(diǎn)為SKIPIF1<0利用中點(diǎn)坐標(biāo)公式得SKIPIF1<0,將SKIPIF1<0代入直線SKIPIF1<0:SKIPIF1<0中;②SKIPIF1<0整理得:SKIPIF1<0(3)直線關(guān)于點(diǎn)對稱問題(求SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0的對稱直線SKIPIF1<0,則SKIPIF1<0)方法一:在直線SKIPIF1<0上找一點(diǎn)SKIPIF1<0,求點(diǎn)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對稱的點(diǎn)SKIPIF1<0,根據(jù)SKIPIF1<0,再由點(diǎn)斜式求解;方法二:由SKIPIF1<0SKIPIF1<0,設(shè)出SKIPIF1<0的直線方程,由點(diǎn)SKIPIF1<0到兩直線的距離相等SKIPIF1<0求參數(shù).方法三:在直線SKIPIF1<0任意一點(diǎn)SKIPIF1<0,求該點(diǎn)關(guān)于點(diǎn)SKIPIF1<0對稱的點(diǎn)SKIPIF1<0,則該點(diǎn)SKIPIF1<0在直線SKIPIF1<0上.(4)直線關(guān)于直線對稱問題4.1直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)相交,求SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱直線SKIPIF1<0①求出SKIPIF1<0與SKIPIF1<0的交點(diǎn)SKIPIF1<0②在SKIPIF1<0上任意取一點(diǎn)SKIPIF1<0(非SKIPIF1<0點(diǎn)),求出SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0③根據(jù)SKIPIF1<0,SKIPIF1<0兩點(diǎn)求出直線SKIPIF1<04.2直線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)和SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)平行,求SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱直線SKIPIF1<0①SKIPIF1<0②在直線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0,求點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,利用點(diǎn)斜式求直線SKIPIF1<0.8、圓的標(biāo)準(zhǔn)方程我們把方程SKIPIF1<0稱為圓心為SKIPIF1<0半徑為SKIPIF1<0的圓的標(biāo)準(zhǔn)方程.9、圓上的點(diǎn)到定點(diǎn)的最大、最小距離設(shè)SKIPIF1<0的方程SKIPIF1<0,圓心SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0為平面內(nèi)一點(diǎn);記SKIPIF1<0;①若點(diǎn)SKIPIF1<0在SKIPIF1<0外,則SKIPIF1<0;SKIPIF1<0②若點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0;SKIPIF1<0③若點(diǎn)SKIPIF1<0在SKIPIF1<0內(nèi),則SKIPIF1<0;SKIPIF1<010、圓的一般方程對于方程SKIPIF1<0(SKIPIF1<0為常數(shù)),當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0叫做圓的一般方程.①當(dāng)SKIPIF1<0時(shí),方程表示以SKIPIF1<0為圓心,以SKIPIF1<0為半徑的圓;②當(dāng)SKIPIF1<0時(shí),方程表示一個(gè)點(diǎn)SKIPIF1<0③當(dāng)SKIPIF1<0時(shí),方程不表示任何圖形說明:圓的一般式方程特點(diǎn):①SKIPIF1<0和SKIPIF1<0前系數(shù)相等(注意相等,不一定要是1)且不為0;②沒有SKIPIF1<0項(xiàng);③SKIPIF1<0.11、直線與圓相交記直線SKIPIF1<0被圓SKIPIF1<0截得的弦長為SKIPIF1<0的常用方法(1)幾何法(優(yōu)先推薦)①弦心距(圓心到直線的距離)②弦長公式:SKIPIF1<0(2)代數(shù)法直線SKIPIF1<0:SKIPIF1<0;圓SKIPIF1<0SKIPIF1<0聯(lián)立SKIPIF1<0消去“SKIPIF1<0”得到關(guān)于“SKIPIF1<0”的一元二次函數(shù)SKIPIF1<0弦長公式:SKIPIF1<012、圓上點(diǎn)到直線的最大(?。┚嚯x設(shè)圓心到直線的距離為SKIPIF1<0,圓的半徑為SKIPIF1<0①當(dāng)直線與圓相離時(shí),圓上的點(diǎn)到直線的最大距離為:SKIPIF1<0,最小距離為:SKIPIF1<0;②當(dāng)直線與圓相切時(shí),圓上的點(diǎn)到直線的最大距離為:SKIPIF1<0,最小距離為:SKIPIF1<0;③當(dāng)直線與圓相交時(shí),圓上的點(diǎn)到直線的最大距離為:SKIPIF1<0,最小距離為:SKIPIF1<0;13、圓與圓的公共弦(1)圓與圓的公共弦圓與圓相交得到的兩個(gè)交點(diǎn),這兩點(diǎn)之間的線段就是兩圓的公共弦.(2)公共弦所在直線的方程設(shè)SKIPIF1<0:SKIPIF1<0SKIPIF1<0:SKIPIF1<0聯(lián)立作差得到:SKIPIF1<0即為兩圓共線方程(3)公共弦長的求法代數(shù)法:將兩圓的方程聯(lián)立,解出兩交點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式求其長.幾何法:求出公共弦所在直線的方程,利用勾股定理解直角三角形,求出弦長.第二部分:重難點(diǎn)題型突破突破一:直線傾斜角與斜率1.(2022·湖南·懷化市湖天中學(xué)高二階段練習(xí))已知SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0過點(diǎn)SKIPIF1<0,且與線段SKIPIF1<0相交,則直線SKIPIF1<0的斜率取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·遼寧·大連市第二十三中學(xué)高二期中)已知直線SKIPIF1<0和以SKIPIF1<0,SKIPIF1<0為端點(diǎn)的線段相交,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<03.(2022·廣東·深圳中學(xué)高二期中)已知點(diǎn)SKIPIF1<0,SKIPIF1<0,若點(diǎn)SKIPIF1<0在線段AB上,則SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·四川省瀘縣第四中學(xué)高二期中(文))已知直線SKIPIF1<0與曲線SKIPIF1<0有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是________.突破二:兩條直線平行與垂直1.(2022·江蘇南通·高二期中)SKIPIF1<0是直線SKIPIF1<0與直線SKIPIF1<0平行的(
)條件A.充分不必要 B.必要不充分C.充要 D.既非充分又非必要2.(2022·湖北宜昌·高二期中)若直線SKIPIF1<0:SKIPIF1<0與SKIPIF1<0:SKIPIF1<0平行,則實(shí)數(shù)SKIPIF1<0(
)A.2 B.-2 C.SKIPIF1<0 D.SKIPIF1<03.(2022·福建省福州第十一中學(xué)高三期中)已知SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0垂直,則SKIPIF1<0的最小值是___________.4.(2022·浙江·元濟(jì)高級中學(xué)高二期中)已知直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0:SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0_________.突破三:直線方程1.(2022·北京四中高二期中)與直線SKIPIF1<0平行,且與圓SKIPIF1<0相切的直線方程為______.2.(2022·福建·晉江市季延中學(xué)高二期中)直線SKIPIF1<0被圓SKIPIF1<0截得的弦長為定值,則直線l的方程為_________________________.3.(2022·遼寧沈陽·高二期中)直線l過點(diǎn)SKIPIF1<0,若點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為3,則直線SKIPIF1<0的方程為______.4.(2022·廣東湛江·高三階段練習(xí))寫出與直線SKIPIF1<0垂直且和圓SKIPIF1<0相切的一條直線的方程:__________.突破四:距離問題1.(2022·浙江·高二期中)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.SKIPIF1<02.(2022·湖北宜昌·高二期中)函數(shù)SKIPIF1<0的最小值是(
)A.5 B.4 C.SKIPIF1<0 D.SKIPIF1<03.(2022·北京工業(yè)大學(xué)附屬中學(xué)高二期中)著名數(shù)學(xué)家華羅庚曾說過:“數(shù)無形時(shí)少直覺,形少數(shù)時(shí)難入微.”事實(shí)上,有很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:SKIPIF1<0可以轉(zhuǎn)化為平面上點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的距離.結(jié)合上述觀點(diǎn),可得SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·福建省廈門第二中學(xué)高二階段練習(xí))點(diǎn)SKIPIF1<0到直線SKIPIF1<0(SKIPIF1<0為任意實(shí)數(shù))的距離的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·山東青島·高二期中)直線SKIPIF1<0過點(diǎn)SKIPIF1<0,SKIPIF1<0和SKIPIF1<0兩點(diǎn)到直線l的距離相等,則直線l的方程為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<06.(2022·遼寧省康平縣高級中學(xué)高二期中)若圓M:SKIPIF1<0上至少有3個(gè)點(diǎn)到直線l:SKIPIF1<0的距離為SKIPIF1<0,則k的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2022·河北·石家莊市第十八中學(xué)高二階段練習(xí))若第一象限內(nèi)的點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)在直線SKIPIF1<0上,則SKIPIF1<0的最小值是(
)A.25 B.SKIPIF1<0 C.17 D.SKIPIF1<08.(2022·湖北·高二階段練習(xí))平面直角坐標(biāo)系中有點(diǎn)SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,且SKIPIF1<0點(diǎn)到直線SKIPIF1<0的距離是SKIPIF1<0,則直線SKIPIF1<0的方程是__________.9.(2022·河南·宜陽縣第一高級中學(xué)高二階段練習(xí))已知直線SKIPIF1<0與SKIPIF1<0平行,則SKIPIF1<0,SKIPIF1<0間的距離為___________.10.(2022·黑龍江省饒河縣高級中學(xué)高二階段練習(xí))已知直線SKIPIF1<0,SKIPIF1<0,則直線SKIPIF1<0與SKIPIF1<0之間的距離最大值為______.11.(2022·江蘇·蘇州市相城區(qū)陸慕高級中學(xué)高二階段練習(xí))實(shí)數(shù)SKIPIF1<0滿足:SKIPIF1<0,則SKIPIF1<0的最小值為________12.(2022·遼寧·東北育才學(xué)校高二階段練習(xí))若實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為______.13.(2022·上海市嘉定區(qū)第二中學(xué)高二期中)已知SKIPIF1<0為直線SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0,則m的最小值為___________.突破五:圓的方程1.(2022·北京豐臺(tái)二中高三階段練習(xí))若直線SKIPIF1<0截取圓SKIPIF1<0所得弦長為2,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<02.(2022·全國·高二課時(shí)練習(xí))已知直線SKIPIF1<0恒過定點(diǎn)P,則與圓C:SKIPIF1<0有公共的圓心且過點(diǎn)P的圓的標(biāo)準(zhǔn)方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·安徽·合肥市第七中學(xué)高二期中)已知方程SKIPIF1<0表示圓,則k的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國·高二課時(shí)練習(xí))已知SKIPIF1<0,則SKIPIF1<0的外接圓的方程是___________.5.(2022·江西·高三階段練習(xí)(文))設(shè)圓心SKIPIF1<0在直線SKIPIF1<0與直線SKIPIF1<0上,點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的方程為______.突破六:與圓上點(diǎn)有關(guān)的距離最值問題1.(2022·黑龍江·綏棱縣第一中學(xué)高三階段練習(xí))已知圓C:SKIPIF1<0上的點(diǎn)到直線l:SKIPIF1<0的最大距離為M?最小距離為m,若SKIPIF1<0,則實(shí)數(shù)k的值是(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0或1 D.SKIPIF1<0或12.(2022·貴州貴陽·高二階段練習(xí))直線SKIPIF1<0被圓SKIPIF1<0截得的最短弦長為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·模擬預(yù)測)已知點(diǎn)P是曲線SKIPIF1<0上的動(dòng)點(diǎn),則點(diǎn)P到直線SKIPIF1<0的距離的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·吉林吉林·高二期中)已知SKIPIF1<0是圓SKIPIF1<0上的一點(diǎn),則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·安徽省泗縣第一中學(xué)高二期中)直線SKIPIF1<0分別與SKIPIF1<0軸,SKIPIF1<0軸交于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,則SKIPIF1<0面積的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·河南·民權(quán)縣第一高級中學(xué)模擬預(yù)測(文))已知圓SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0是圓SKIPIF1<0上一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),則SKIPIF1<0的最小值為__________.7.(2022·北京市第五十七中學(xué)高三階段練習(xí))若點(diǎn)SKIPIF1<0在半徑為1,且圓心為坐標(biāo)原點(diǎn)的圓上,過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線,切點(diǎn)為SKIPIF1<0,則SKIPIF1<0的最小值為___________.8.(2022·湖南·衡陽市一中高二期中)已知SKIPIF1<0是曲線SKIPIF1<0上兩個(gè)不同的點(diǎn),SKIPIF1<0,則SKIPIF1<0的最大值與最小值的比值是__________.9.(2022·上海市青浦高級中學(xué)高二階段練習(xí))一束光線從點(diǎn)SKIPIF1<0射出,經(jīng)SKIPIF1<0軸上一點(diǎn)SKIPIF1<0反射后到達(dá)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為_____.10.(2022·貴州·高三階段練習(xí)(文))已知O是坐標(biāo)原點(diǎn),A,B是圓O:SKIPIF1<0上兩點(diǎn),且SKIPIF1<0,若弦SKIPIF1<0的中點(diǎn)為SKIPIF1<0,則SKIPIF1<0的最小值為___________.突破七:圓的切線問題1.(2022·江蘇連云港·高二期末)從圓SKIPIF1<0外一點(diǎn)SKIPIF1<0向圓引切線,則此切線的長為(
)A.1 B.SKIPIF1<0 C.2 D.32.(2022·全國·高三專題練習(xí))已知直線SKIPIF1<0是圓SKIPIF1<0:SKIPIF1<0的對稱軸,過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的一條切線,切點(diǎn)為SKIPIF1<0,則SKIPIF1<0等于(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·遼寧鞍山·高二期中)過點(diǎn)SKIPIF1<0引圓SKIPIF1<0的切線,則切線的方程為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<04.(2022·四川省南充高級中學(xué)高二階段練習(xí)(理))若圓C:SKIPIF1<0上任意一點(diǎn)關(guān)于直線SKIPIF1<0的對稱點(diǎn)都在圓SKIPIF1<0上,由點(diǎn)SKIPIF1<0向圓SKIPIF1<0作切線,則切線段長的最小值為(
)A.2 B.3 C.4 D.65.(2022·全國·高二課時(shí)練習(xí))過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0,則切線SKIPIF1<0的方程為_________.6.(2022·全國·高二課時(shí)練習(xí))曲線SKIPIF1<0與直線l:y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是________.突破八:兩圓的公共弦問題1.(2022·四川·成都七中高二期中(文))圓SKIPIF1<0?與圓SKIPIF1<0?公共弦所在直線方程為___________.2.(2022·四川成都·高二期中(文))圓SKIPIF1<0與圓SKIPIF1<0的公共弦長為______.3.(2022·天津·耀華中學(xué)高二期中)兩圓SKIPIF1<0和SKIPIF1<0相交于兩點(diǎn)SKIPIF1<0,則公共弦SKIPIF1<0的長為__________.4.(2022·四川省綿陽南山中學(xué)高二階段練習(xí)(理))過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點(diǎn)分別為A,B,則直線AB的方程為_____.(請用直線方程的一般式作答)突破九:圓的弦長問題1.(2022·天津市第二耀華中學(xué)高三階段練習(xí))若直線SKIPIF1<0被圓SKIPIF1<0截得線段的長為6,則實(shí)數(shù)SKIPIF1<0的值為__________.2.(2022·四川省綿陽江油中學(xué)模擬預(yù)測(理))若直線SKIPIF1<0過SKIPIF1<0,且被圓SKIPIF1<0截得的弦長為SKIPIF1<0,則直線SKIPIF1<0方程為______3.(2022·廣東·模擬預(yù)測)若斜率為SKIPIF1<0的直線與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,與圓SKIPIF1<0相交于點(diǎn)SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0______.4.(2022·河南·高二階段練習(xí)(文))過點(diǎn)SKIPIF1<0作一條直線與圓SKIPIF1<0分別交于M,N兩點(diǎn).若弦MN的長為SKIPIF1<0,則直線MN的方程為______.5.(2022·山西運(yùn)城·高二階段練習(xí))已知圓SKIPIF1<0過平面內(nèi)三點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若點(diǎn)B也在圓SKIPIF1<0上,且弦AB長為SKIPIF1<0,求直線AB的方程.6.(2022·福建·廈門外國語學(xué)校石獅分校高二期中)已知圓SKIPIF1<0:SKIPIF1<0,點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0為圓SKIPIF1<0上動(dòng)點(diǎn),SKIPIF1<0中點(diǎn)為SKIPIF1<0.(1)當(dāng)點(diǎn)SKIPIF1<0在圓SKIPIF1<0上動(dòng)時(shí),求點(diǎn)SKIPIF1<0的軌跡方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的軌跡相交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,求直線SKIPIF1<0的方程.7.(2022·北京市師達(dá)中學(xué)高二階段練習(xí))已知圓SKIPIF1<0,直線SKIPIF1<0.(1)若直線SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0,求SKIPIF1<0的值.(2)求證:無論SKIPIF1<0取什么實(shí)數(shù),直線SKIPIF1<0與圓SKIPIF1<0恒交于兩點(diǎn);(3)求直線SKIPIF1<0被圓SKIPIF1<0截得的最短弦長,以及此時(shí)直線SKIPIF1<0的方程.8.(2022·遼寧·本溪滿族自治縣高級中學(xué)高二階段練習(xí))已知直線SKIPIF1<0經(jīng)過直線SKIPIF1<0和SKIPIF1<0的交點(diǎn),且與直線SKIPIF1<0垂直.(1)求直線SKIPIF1<0的方程;(2)若圓SKIPIF1<0過點(diǎn)SKIPIF1<0,且圓心SKIPIF1<0在SKIPIF1<0軸的負(fù)半軸上,直線SKIPIF1<0被圓SKIPIF1<0所截得的弦長為SKIPIF1<0,求圓SKIPIF1<0的標(biāo)準(zhǔn)方程.9.(2022·山東省濟(jì)南市萊鋼高級中學(xué)高二期中)已知圓SKIPIF1<0和點(diǎn)SKIPIF1<0.(1)過點(diǎn)M向圓O引切線,求切線的方程;(2)求以點(diǎn)M為圓心,且被直線SKIPIF1<0截得的弦長為8的圓M的方程;10.(2022·貴州貴陽·高二階段練習(xí))已知圓SKIPIF1<0的圓心在直線SKIPIF1<0上,且與直線SKIPIF1<0相切于點(diǎn)SKIPIF1<0.(1)求圓SKIPIF1<0的方程;(2)若過點(diǎn)SKIPIF1<0的直線SKIPIF1<0被圓SKIPIF1<0截得的弦SKIPIF1<0的長為4,求直線SKIPIF1<0的方程.第三部分:沖刺重難點(diǎn)特訓(xùn)一、單選題1.(2022·浙江省杭州第九中學(xué)高二期中)直線SKIPIF1<0的傾斜角為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·浙江·杭州市源清中學(xué)高二期中)已知直線的方程為SKIPIF1<0,則該直線的傾斜角為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·浙江大學(xué)附屬中學(xué)高二期中)已知x,y滿足SKIPIF1<0,若不等式SKIPIF1<0恒成立,則c的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·浙江大學(xué)附屬中學(xué)高二期中)若直線SKIPIF1<0與SKIPIF1<0互相垂直,則實(shí)數(shù)SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或0 D.SKIPIF1<0或05.(2022·河北·任丘市第一中學(xué)高二階段練習(xí))已知圓SKIPIF1<0與圓SKIPIF1<0的公共弦所在直線恒過點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·河北·涉縣第一中學(xué)高三期中)過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線,則切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·河南·馬店第一高級中學(xué)模擬預(yù)測(理))已知?jiǎng)狱c(diǎn)M,N分別在拋物線SKIPIF1<0:SKIPIF1<0和圓SKIPIF1<0:SKIPIF1<0上,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.68.(2022·湖南長沙·高二階段練習(xí))已知直線SKIPIF1<0:SKIPIF1<0和圓SKIPIF1<0:SKIPIF1<0交于A,B兩點(diǎn),則弦AB所對的圓心角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2022·四川·威遠(yuǎn)中學(xué)校高二期中(文))一條光線從點(diǎn)SKIPIF1<0射出,經(jīng)x軸反射后,與圓SKIPIF1<0相切,則反射后光線所在的直線方程為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0SKIPIF1<010.(2022·四川省遂寧高級實(shí)驗(yàn)學(xué)校高二期中(理))已知圓SKIPIF1<0,圓SKIPIF1<0,過圓SKIPIF1<0上任意一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線SKIPIF1<0、SKIPIF1<0切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<011.(2022·江蘇·南京市天印高級中學(xué)高二階段練習(xí))若圓SKIPIF1<0與圓SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,圓SKIPIF1<0上任意一點(diǎn)SKIPIF1<0均滿足SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),則圓SKIPIF1<0和圓SKIPIF1<0的公切線有(
)A.1條 B.2條 C.3條 D.4條二、多選題12.(2022·浙江·杭州市源清中學(xué)高二期中)已知圓SKIPIF1<0,則下列說法正確的是(
)A.點(diǎn)SKIPIF1<0在圓內(nèi) B.圓M關(guān)于SKIPIF1<0對稱C.直線SKIPIF1<0與截圓M的弦長為SKIPIF1<0 D.直線SKIPIF1<0與圓M相切13.(2022·浙江大學(xué)附屬中學(xué)高二期中)設(shè)動(dòng)直線SKIPIF1<0交圓SKIPIF1<0于A,B兩點(diǎn)(C為圓心),則下列說法正確的有(
)A.直線l過定點(diǎn)SKIPIF1<0 B.當(dāng)SKIPIF1<0取得最大值時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0最小時(shí),其余弦值SKIPIF1<0 D.SKIPIF1<0的取值范圍是SKIPIF1<014.(2022·福建省南安國光中學(xué)高三階段練習(xí))已知圓SKIPIF1<0(SKIPIF1<0為圓心),直線SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上運(yùn)動(dòng),直線SKIPIF1<0分別與圓SKIPIF1<0切于點(diǎn)SKIPIF1<0.則下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能化停車場車位租賃管理服務(wù)合同模板4篇
- 2025年度智能家居廚房系統(tǒng)安裝工程合同規(guī)范版4篇
- 2024版牛奶飲料購銷合同
- 2025年度專業(yè)代理記賬服務(wù)合作協(xié)議書4篇
- 2025年度文化宣傳活動(dòng)傳單派發(fā)合作協(xié)議范本4篇
- 2024年道路擴(kuò)建工程爆破作業(yè)協(xié)議樣本一
- 2025年度水利樞紐沖孔灌注樁施工勞務(wù)分包合同規(guī)范4篇
- 2025年度新型瓷磚產(chǎn)品研發(fā)運(yùn)輸合作協(xié)議4篇
- 2024石材開采與石材加工廠合作合同3篇
- 2025年度智能果園承包合作協(xié)議范本4篇
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 2025年浙江杭州市西湖區(qū)專職社區(qū)招聘85人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《數(shù)學(xué)廣角-優(yōu)化》說課稿-2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- “懂你”(原題+解題+范文+話題+技巧+閱讀類素材)-2025年中考語文一輪復(fù)習(xí)之寫作
- 2025年景觀照明項(xiàng)目可行性分析報(bào)告
- 2025年江蘇南京地鐵集團(tuán)招聘筆試參考題庫含答案解析
- 2025年度愛讀書學(xué)長參與的讀書項(xiàng)目投資合同
- 2024年城市軌道交通設(shè)備維保及安全檢查合同3篇
- 電力系統(tǒng)分析答案(吳俊勇)(已修訂)
- 化學(xué)-河北省金太陽質(zhì)檢聯(lián)盟2024-2025學(xué)年高三上學(xué)期12月第三次聯(lián)考試題和答案
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué) 北師大版
評論
0/150
提交評論