版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆浙江省杭州拱墅區(qū)四校聯(lián)考數(shù)學九上期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若點,,在反比例函數(shù)(為常數(shù))的圖象上,則,,的大小關(guān)系是()A. B. C. D.2.兩個相似三角形,其面積比為16:9,則其相似比為()A.16:9 B.4:3 C.9:16 D.3:43.如果兩個相似多邊形的面積比為4:9,那么它們的周長比為()A.: B.2:3 C.4:9 D.16:814.如圖,DC是⊙O的直徑,弦AB⊥CD于點F,連接BC,BD,則錯誤結(jié)論為()A.OF=CF B.AF=BF C. D.∠DBC=90°5.如圖,把長40,寬30的矩形紙板剪掉2個小正方形和2個小矩形(陰影部分即剪掉部分),將剩余的部分折成一個有蓋的長方體盒子,設剪掉的小正方形邊長為(紙板的厚度忽略不計),若折成長方體盒子的表面積是950,則的值是()A.3 B.4 C.4.8 D.56.下列幾何圖形中,是中心對稱圖形但不是軸對稱圖形的是()A.圓 B.正方形 C.矩形 D.平行四邊形7.如圖,四邊形ABCD內(nèi)接于⊙O,E為CD延長線上一點,若∠ADE=110°,則∠B=()A.80° B.100° C.110° D.120°8.某商品原價格為100元,連續(xù)兩次上漲,每次漲幅10%,則該商品兩次上漲后的價格為()A.121元 B.110元 C.120元 D.81元9.如圖,AB為⊙O的直徑,點C、D在⊙O上,若∠AOD=30°,則∠BCD的度數(shù)是()A.150° B.120° C.105° D.75°10.順次連結(jié)菱形各邊中點所得到四邊形一定是(?)A.平行四邊形 B.正方形? C.矩形? D.菱形11.要得到拋物線,可以將()A.向左平移1個單位長度,再向上平移3個單位長度B.向左平移1個單位長度,再向下平移3個單位長度C.向右平移1個單位長度,再向上平移3個單位長度D.向右平移1個單位長度,再向下平移3個單位長度12.在中,,另一個和它相似的三角形最長的邊是,則這個三角形最短的邊是()A. B. C. D.二、填空題(每題4分,共24分)13.寫出經(jīng)過點(0,0),(﹣2,0)的一個二次函數(shù)的解析式_____(寫一個即可).14.如圖,已知點A、B分別在反比例函數(shù)y=(x>0),y=﹣(x>0)的圖象上,且OA⊥OB,則的值為_____.15.如圖,AC為圓O的弦,點B在弧AC上,若∠CBO=58°,∠CAO=20°,則∠AOB的度數(shù)為___________16.已知為銳角,且,則度數(shù)等于______度.17.將邊長分別為,,的三個正方形按如圖所示的方式排列,則圖中陰影部分的面積為______.18.如圖,ΔABC內(nèi)接于⊙O,∠B=90°,AB=BC,D是⊙O上與點B關(guān)于圓心O成中心對稱的點,P是BC邊上一點,連結(jié)AD、DC、AP.已知AB=4,CP=1,Q是線段AP上一動點,連結(jié)BQ并延長交四邊形ABCD的一邊于點R,且滿足AP=BR,則三、解答題(共78分)19.(8分)定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.如圖1,把一張頂角為36o的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,我們把這兩條線段叫做等腰三角形的三分線.(1)如圖2,請用兩種不同的方法畫出頂角為45o的等腰三角形的三分線,并標注每個等腰三角形頂角的度數(shù):(若兩種方法分得的三角形成3對全等三角形,則視為同一種).(2)如圖3,△ABC中,AC=2,BC=3,∠C=2∠B,請畫出△ABC的三分線,并求出三分線的長.20.(8分)若直線與雙曲線的交點為,求的值.21.(8分)(1)計算:|1﹣﹣2cos45°+2sin30°(2)解方程:x2﹣6x﹣16=022.(10分)如圖,AB為⊙O的弦,⊙O的半徑為5,OC⊥AB于點D,交⊙O于點C,且CD=1,(1)求線段OD的長度;(2)求弦AB的長度.23.(10分)如圖,為的直徑,、為上兩點,且點為的中點,過點作的垂線,交的延長線于點,交的延長線于點.(1)求證:是的切線;(2)當,時,求的長.24.(10分)已知是二次函數(shù),且函數(shù)圖象有最高點.(1)求的值;(2)當為何值時,隨的增大而減少.25.(12分)如圖,點E為□ABCD中一點,EA=ED,∠AED=90o,點F,G分別為AB,BC上的點,連接DF,AG,AD=AG=DF,且AG⊥DF于點H,連接EG,DG,延長AB,DG相交于點P.(1)若AH=6,F(xiàn)H=2,求AE的長;(2)求證:∠P=45o;(3)若DG=2PG,求證:∠AGE=∠EDG.26.甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護人員支援湖北武漢抗擊疫情.(1)若從甲、乙兩醫(yī)院支援的醫(yī)護人員中分別隨機選1名,則所選的2名醫(yī)護人員性別相同的概率是;(2)若從支援的4名醫(yī)護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護人員來自同一所醫(yī)院的概率.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)反比例函數(shù)的性質(zhì),可以判斷出x1,x2,x3的大小關(guān)系,本題得以解決.【題目詳解】解:∵反比例函數(shù)(m為常數(shù)),m2+1>0,
∴在每個象限內(nèi),y隨x的增大而減小,
∵點A(x1,-6),B(x2,-2),C(x3,2)在反比例函數(shù)(m為常數(shù))的圖象上,∵,
∴x2<x1<x3,故選:D.【題目點撥】本題考查反比例函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.2、B【分析】根據(jù)兩個相似多邊形的面積比為16:9,面積之比等于相似比的平方.【題目詳解】根據(jù)題意得:=.即這兩個相似多邊形的相似比為4:1.故選:B.【題目點撥】本題考查了相似多邊形的性質(zhì).相似多邊形對應邊之比、周長之比等于相似比,而面積之比等于相似比的平方.3、B【分析】根據(jù)面積比為相似比的平方即可求得結(jié)果.【題目詳解】解:∵兩個相似多邊形的面積比為4:9,∴它們的周長比為:=.故選B.【題目點撥】本題主要考查圖形相似的知識點,解此題的關(guān)鍵在于熟記兩個相似多邊形的面積比為其相似比的平方.4、A【分析】分別根據(jù)垂徑定理及圓周角定理對各選項進行分析即可.【題目詳解】解:∵DC是⊙O直徑,弦AB⊥CD于點F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正確;
∵點F不一定是OC的中點,
∴A錯誤.故選:A.【題目點撥】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.5、D【分析】觀察圖形可知陰影部分小長方形的長為,再根據(jù)去除陰影部分的面積為950,列一元二次方程求解即可.【題目詳解】解:由圖可得出,整理,得,解得,(不合題意,舍去).故選:D.【題目點撥】本題考查的知識點是一元二次方程的應用,根據(jù)圖形找出陰影部分小長方形的長是解此題的關(guān)鍵.6、D【分析】根據(jù)中心對稱圖形和軸對稱圖形的定義逐一判斷即可.【題目詳解】A.圓是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;B.正方形是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;C.矩形是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;D.平行四邊形是中心對稱圖形,不是軸對稱圖形,故本選項符合題意.故選D.【題目點撥】此題考查的是中心對稱圖形和軸對稱圖形的識別,掌握中心對稱圖形和軸對稱圖形的定義是解決此題的關(guān)鍵.7、C【分析】直接利用圓內(nèi)接四邊形的性質(zhì)分析得出答案.【題目詳解】∵四邊形ABCD內(nèi)接于⊙O,E為CD延長線上一點,∠ADE=110°,∴∠B=∠ADE=110°.故選:C.【題目點撥】本題考查圓內(nèi)接四邊形的性質(zhì).熟練掌握圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補;.圓內(nèi)接四邊形的外角等于它的內(nèi)對角是解題的關(guān)鍵.8、A【分析】依次列出每次漲價后的價格即可得到答案.【題目詳解】第一次漲價后的價格為:,第二次漲價后的價格為:121(元),故選:A.【題目點撥】此題考查代數(shù)式的列式計算,正確理解題意是解題的關(guān)鍵.9、C【解題分析】試題解析:連接AC,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故選C.10、C【分析】根據(jù)三角形的中位線定理首先可以證明:順次連接四邊形各邊中點所得四邊形是平行四邊形.再根據(jù)對角線互相垂直,即可證明平行四邊形的一個角是直角,則有一個角是直角的平行四邊形是矩形.【題目詳解】如圖,四邊形ABCD是菱形,且E.
F.
G、H分別是AB、BC、CD、AD的中點,
則EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.
故四邊形EFGH是平行四邊形,
又∵AC⊥BD,
∴EH⊥EF,∠HEF=90°,
∴邊形EFGH是矩形.
故選:C.【題目點撥】本題考查平行四邊形的判定和三角形中位線定理,解題的關(guān)鍵是掌握平行四邊形的判定和三角形中位線定理.11、C【分析】找到兩個拋物線的頂點,根據(jù)拋物線的頂點即可判斷是如何平移得到.【題目詳解】解:∵y=(x-1)2+1的頂點坐標為(1,1),y=x2的頂點坐標為(0,0),
∴將拋物線y=x2向右平移1個單位,再向上平移1個單位,可得到拋物線y=(x-1)2+1.
故選:C.【題目點撥】本題考查了二次函數(shù)圖象與幾何變換,解答時注意抓住點的平移規(guī)律和求出關(guān)鍵點頂點坐標.12、B【分析】設另一個三角形最短的一邊是x,根據(jù)相似三角形對應邊成比例即可得出結(jié)論.【題目詳解】設另一個三角形最短的一邊是x,∵△ABC中,AB=12,BC=1,CA=24,另一個和它相似的三角形最長的一邊是36,∴,解得x=1.故選:C.【題目點撥】本題考查的是相似三角形的性質(zhì),熟知相似三角形的對應邊成比例是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、y=x2+2x(答案不唯一).【解題分析】設此二次函數(shù)的解析式為y=ax(x+2),令a=1即可.【題目詳解】∵拋物線過點(0,0),(﹣2,0),∴可設此二次函數(shù)的解析式為y=ax(x+2),把a=1代入,得y=x2+2x.故答案為y=x2+2x(答案不唯一).【題目點撥】本題考查的是待定系數(shù)法求二次函數(shù)解析式,此題屬開放性題目,答案不唯一.14、.【分析】作AC⊥y軸于C,BD⊥y軸于D,如圖,利用反比例函數(shù)圖象上點的坐標特征和三角形面積公式得到S△OAC=,S△OBD=,再證明Rt△AOC∽Rt△OBD,然后利用相似三角形的性質(zhì)得到的值.【題目詳解】解:作AC⊥y軸于C,BD⊥y軸于D,如圖,∵點A、B分別在反比例函數(shù)y=(x>0),y=﹣(x>0)的圖象上,∴S△OAC=×1=,S△OBD=×|﹣5|=,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴=()2==,∴=.∴=.故答案為:.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.15、76°【分析】如圖,連接OC.根據(jù)∠AOB=2∠ACB,求出∠ACB即可解決問題.【題目詳解】如圖,連接OC.∵OA=OC=OB,∴∠A=∠OCA=20°,∠B=∠OCB=58°,∴∠ACB=∠OCB?∠OCA=58°?20°=38°,∴∠AOB=2∠ACB=76°,故答案為76°.【題目點撥】本題考查等腰三角形的性質(zhì),圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.16、30【分析】根據(jù)銳角三角函數(shù)值即可得出角度.【題目詳解】∵,為銳角∴=30°故答案為30.【題目點撥】此題主要考查根據(jù)銳角三角函數(shù)值求角度,熟練掌握,即可解題.17、【分析】首先對圖中各點進行標注,陰影部分的面積等于正方形BEFL的面積減去梯形BENK的面積,再利用相似三角形的性質(zhì)求出BK、EN的長從而求出梯形的面積即可得出答案.【題目詳解】解:如圖所示,∵四邊形MEGH為正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面積:∴陰影部分的面積:故答案為:.【題目點撥】本題主要考查的知識點是圖形面積的計算以及相似三角形判定及其性質(zhì),根據(jù)相似的性質(zhì)求出相應的邊長是解答本題的關(guān)鍵.18、1或12【題目詳解】解:因為ΔABC內(nèi)接于圓,∠B=90°,AB=BC,D是⊙O上與點B關(guān)于圓心O成中心對稱的點,∴AB=BC=CD=AD,∴ABCD是正方形∴AD//BC①點R在線段AD上,
∵AD∥BC,
∴∠ARB=∠PBR,∠RAQ=∠APB,
∵AP=BR,
∴△BAP≌ABR,
∴AR=BP,
在△AQR與△PQB中,∵∠RAQ=∠QPB∵ΔAQR?ΔPQB∴BQ=QR∴BQ:QR=1:1②點R在線段CD上,此時△ABP≌△BCR,
∴∠BAP=∠CBR.
∵∠CBR+∠ABR=90°,
∴∠BAP+∠ABR=90°,
∴BQ是直角△ABP斜邊上的高,∴BQ=∴QR=BR-BQ=5-2.4=2.6,∴BQ:QR=12故答案為:1或1213【題目點撥】本題考查正方形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,勾股定理,中心對稱的性質(zhì).解答本題的關(guān)鍵是熟練掌握判定兩個三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.三、解答題(共78分)19、(1)圖見解析,;(2)三分線長分別是和【分析】(1)根據(jù)等腰三角形的判定定理容易畫出圖形;由等腰三角形的性質(zhì)即可求出各個頂角的度數(shù);(2)根據(jù)等腰三角形的判定定力容易畫出圖形,設,則,,則,得出對應邊成比例,設,得出方程組,解方程即可得.【題目詳解】解:(1)作圖如圖1、圖2所示:在圖1中,即三個等腰三角形的頂角分別為在圖2中,,,即三個等腰三角形的頂角分別為(2)如圖3所示,就是所求的三分線設,則,此時,設,∵,∴∵,∴,解方程組解得:,或(負值舍去),即三分線長分別是和【題目點撥】本題是相似形的綜合性題目,考查了等腰三角形的判定和性質(zhì)、等腰三角形的畫圖、相似三角形的判定和性質(zhì)、解方程組等知識,本題考查學生學習的理解能力及動手創(chuàng)新能力,綜合性較強,有一定難度.20、1【分析】根據(jù)直線與雙曲線有交點可得,變形為,根據(jù)一元二次方程根與系數(shù)的關(guān)系,得出,再化簡為,再將的值代入即可得出答案.【題目詳解】解:由題意得:,∴,∴∴=故答案為:1.【題目點撥】本題考查了一次函數(shù)與反比例函數(shù)的綜合,根據(jù)一元二次方程的根與系數(shù)的關(guān)系得出的值是解題的關(guān)鍵.21、(1)1;(1)x1=8,x1=﹣1【分析】(1)根據(jù)二次根式的乘法、加減法和特殊角的三角函數(shù)值可以解答本題;(1)根據(jù)因式分解法可以解答此方程.【題目詳解】(1)|1﹣|+﹣1cos45°+1sin30°=﹣1+1﹣1×+1×=﹣1+1﹣+1=1;(1)∵x1﹣6x﹣16=0,∴(x﹣8)(x+1)=0,∴x﹣8=0或x+1=0,解得,x1=8,x1=﹣1.【題目點撥】本題考查解一元二次方程、實數(shù)的運算、特殊角的三角函數(shù)值,解答本題的關(guān)鍵是明確它們各自的解答方法.22、(1)OD=4;(2)弦AB的長是1.【分析】(1)OD=OC-CD,即可得出結(jié)果;(2)連接AO,由垂徑定理得出AB=2AD,由勾股定理求出AD,即可得出結(jié)果.【題目詳解】(1)∵半徑是5,∴OC=5,∵CD=1,∴OD=OC﹣CD=5﹣1=4;(2)連接AO,如圖所示:∵OC⊥AB,∴AB=2AD,根據(jù)勾股定理:AD=,∴AB=3×2=1,因此弦AB的長是1.【題目點撥】本題考查了垂徑定理、勾股定理;熟練掌握垂徑定理,由勾股定理求出AD是解決問題(2)的關(guān)鍵.23、(1)詳見解析;(2).【分析】(1)連接,如圖,由點為的中點可得,根據(jù)可得,可得,于是,進一步即可得出,進而可證得結(jié)論;(2)在中,利用解直角三角形的知識可求得半徑的長,進而可得AD的長,然后在中利用∠D的正弦即可求出結(jié)果.【題目詳解】解:(1)連接,如圖,∵點為的中點,∴,∴.∵,∴,∴.∴.∵,∴.∴,即.∴是的切線;(2)在中,∵,∴設,則,則,解得:.∴,,∴.在中,∵,∴.【題目點撥】本題考查了圓的切線的判定、等腰三角形的性質(zhì)、平行線的判定和性質(zhì)以及解直角三角形的知識,屬于中檔題型,熟練掌握上述知識是解題的關(guān)鍵.24、(1);(2)當時,隨的增大而減少【分析】(1)根據(jù)二次函數(shù)的定義得出k2+k-4=2,再利用函數(shù)圖象有最高點,得出k+2<0,即可得出k的值;(2)利用(1)中k的值得出二次函數(shù)的解析式,利用形如y=ax2(a≠0)的二次函數(shù)頂點坐標為(0,0),對稱軸是y軸即可得出答案.【題目詳解】(1)∵是二次函數(shù),∴k2+k-4=2且k+2≠0,解得k=-1或k=2,∵函數(shù)有最高點,∴拋物線的開口向下,∴k+2<0,解得k<-2,∴k=-1.
(2)當k=-1時,y=-x2頂點坐標(0,0),對稱軸為y軸,當x>0時,y隨x的增大而減少.【題目點撥】此題主要考查了二次函數(shù)的定義以及其性質(zhì),利用函數(shù)圖象有最高點,得出二次函數(shù)的開口向下是解決問題的關(guān)鍵.25、(1);(2)見詳解;(3)見詳解【分析】(1)在Rt△ADH中,設AD=DF=x,則DH=x-2,由勾股定理,求出AD的長度,由等腰直角三角形的性質(zhì),即可求出AE的長度;(2)根據(jù)題意,設∠ADF=2a,則求出∠FAH=,然后∠ADG=∠AGD=,再根據(jù)三角形的外角性質(zhì),即可得到答案;(3)過點A作AM⊥DP于點M,連接EM,EF,根據(jù)等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),得到角之間的關(guān)系,從而通過等量互換,即可得到結(jié)論成立.【題目詳解】解:(1)∵AG⊥DF于點H,∴∠AHD=90°,∵AH=6,F(xiàn)H=2,在Rt△ADH中,設AD=DF=x,則DH=DFFH=x-2,由勾股定理,得:,∴,∴,即AD=DF=AG=10,∵EA=ED,∠AED=90o,∴△ADE是等腰直角三角形,∴AE=DE=;(2)如圖:∵∠AED=90o,AG⊥DF,∴∠EAH=∠EDH,設∠ADF=2a,∵DA=DF,則∠AFH=∠DAF=,∴∠FAH=,∴∠DAH=,∵AD=AG,∴∠ADG=∠AGD=,∴;(3)過點A作AM⊥DP于點M,連接EM,EF,如圖:∵AD=AG,DG=2PG,∴PG=GM=DM,∵∠P=45°,∴△APM是等腰直角三角形,∴AM=PM=DG,∵∠ANO=∠DNM,∠AED=∠AMD=90
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版奶粉生產(chǎn)廢棄物資源化利用服務合同范本頁24篇
- 2025版教育培訓機構(gòu)品牌授權(quán)及門店移交合同3篇
- 二零二五年度農(nóng)機零部件進出口貿(mào)易合同
- 2025年度綠色環(huán)保內(nèi)墻涂料工程高品質(zhì)施工服務合同4篇
- 二零二五年度面粉原料進口關(guān)稅減免申請合同4篇
- 二零二五年度二手房買賣合同補充條款協(xié)議書(含交易透明)3篇
- 二零二五年度文化演出活動贊助合同正規(guī)范本
- 二零二四年度嬰幼兒專用奶粉代理權(quán)租賃合同范本3篇
- 二零二五年度企業(yè)人力資源戰(zhàn)略規(guī)劃與實施合同范本9篇
- 2025年度個人與個人藝術(shù)品拍賣合同范本4篇
- 農(nóng)民工工資表格
- 【寒假預習】專題04 閱讀理解 20篇 集訓-2025年人教版(PEP)六年級英語下冊寒假提前學(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 2024年度窯爐施工協(xié)議詳例細則版B版
- 幼兒園籃球課培訓
- 護理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
- 《職業(yè)培訓師的培訓》課件
- 建筑企業(yè)新年開工儀式方案
- 一例產(chǎn)后出血的個案護理
- 急診與災難醫(yī)學課件 03 呼吸困難大課何琳zhenshi
評論
0/150
提交評論