八年級數(shù)學(xué)上冊教案(6篇)_第1頁
八年級數(shù)學(xué)上冊教案(6篇)_第2頁
八年級數(shù)學(xué)上冊教案(6篇)_第3頁
八年級數(shù)學(xué)上冊教案(6篇)_第4頁
八年級數(shù)學(xué)上冊教案(6篇)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第八年級數(shù)學(xué)上冊教案(6篇)八年級數(shù)學(xué)上冊教案(篇1)

教學(xué)目標(biāo)

1.知識與技能

領(lǐng)會運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

2.過程與方法

經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態(tài)度與價值觀

培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

重、難點與關(guān)鍵

1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.

2.難點:靈活地應(yīng)用公式法進(jìn)行因式分解.

3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的

教學(xué)方法

采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

教學(xué)過程

一、回顧交流,導(dǎo)入新知

問題牽引

1.分解因式:

(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;

(3)_2-0.01y2.

知識遷移

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

教師活動引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

學(xué)生活動從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

歸納公式完全平方公式a2±2ab+b2=(a±b)2.

二、范例學(xué)習(xí),應(yīng)用所學(xué)

例1把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(_+y)2-14(_+y)+49;(4)+n4.

例2如果_2+a_y+16y2是完全平方,求a的值.

思路點撥根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

三、隨堂練習(xí),鞏固深化

課本P170練習(xí)第1、2題.

探研時空

1.已知_+y=7,_y=10,求下列各式的值.

(1)_2+y2;(2)(_-y)2

2.已知_+=-3,求_4+的值.

四、課堂總結(jié),發(fā)展?jié)撃?/p>

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運(yùn)用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當(dāng)多項式是二項式時,考慮用平方差公式分解;當(dāng)多項式是三項時,應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.

五、布置作業(yè),專題突破

八年級數(shù)學(xué)上冊教案(篇2)

Ⅰ.教學(xué)任務(wù)分析

教學(xué)目標(biāo)

知識與技能使學(xué)生理解正比例函數(shù)的概念,會用描點法畫正比例函數(shù)圖象,掌握正比例函數(shù)的性質(zhì).

過程與能力培養(yǎng)學(xué)生數(shù)學(xué)建模的能力.

情感與態(tài)度實例引入,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

教學(xué)重點探索正比例函數(shù)的性質(zhì).

教學(xué)難點從實際問題情境中建立正比例函數(shù)的數(shù)學(xué)模型.

Ⅱ.教學(xué)過程設(shè)計

問題及師生行為設(shè)計意圖

一、創(chuàng)設(shè)問題,激發(fā)興趣

問題1將下列問題中的變量用函數(shù)表示出來:

(1)小明騎自行車去郊游,速度為4km/h,其行駛路程y隨時間_變化而變化;

(2)三角形的底為10cm,其面積y隨高_(dá)的變化而變化;

(3)筆記本的單價為3元,買筆記本所要的錢數(shù)y隨作業(yè)本數(shù)量_的變化而變化.

解:(1)y=4_;(2)y=5_;(3)y=3_.

教師提出問題,學(xué)生獨立思考并回答問題.

教師點評,并且提醒學(xué)生注意用_表示y.問題引入,為新知作好鋪墊.

二、誘導(dǎo)參與,探究新知

思考:觀察函數(shù)關(guān)系式:

①y=4_;②y=5_;③y=3_.

這些函數(shù)有什么特點?

都是y等于一個常量與_的乘積.

教師提出問題,并引導(dǎo)學(xué)生觀察:

學(xué)生觀察思考并回答問題.

三、引導(dǎo)歸納,提煉新知

(板書)正比例函數(shù)的概念:

一般地,形如y=k_(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).

注意:_的取值范圍是全體實數(shù).

由教師引導(dǎo),學(xué)生觀察得出結(jié)論.體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的關(guān)系.

通過板書,突出本節(jié)課的重點.

四、指導(dǎo)應(yīng)用,發(fā)展能力

1.下列函數(shù)是否是正比例函數(shù)?比例系數(shù)是多少?

(1)是,比例系數(shù)k=8.(2)不是.

(3)是,比例系數(shù)k=.(4)不是.

填空

1.若函數(shù)y=(2m2+8)_m2-8+(m+3)是正比例函數(shù),則m的值是___-3____.

題1請學(xué)生口答,題2學(xué)生獨立完成,并到黑板板書,教師評價書寫規(guī)范.

在本次活動中,教師要關(guān)注:

學(xué)生能否準(zhǔn)確地理解正比例函數(shù)的定義,注意二次項系數(shù)不能為0.

五、探究新知

例1畫出正比例函數(shù)y=_的圖象.

解:(1)列表:

_----2-1012---

y----2-1012---

畫出函數(shù)y=_的圖象.

(1)列表:(2)描點:(3)連線:

想一想

除了用描點法外,還有其他簡單的方法畫正比例函數(shù)圖象嗎?

根據(jù)兩點確定一條直線,我們可以經(jīng)過原點與點(1,k)畫直線,即兩點法.

同理,畫出y=-_的圖象.

師生共同分析:兩個圖象的共同點:都是經(jīng)過原點的直線.不同點:函數(shù)y=_的圖象從左向右呈上升狀態(tài),即隨著_的增大y也增大,經(jīng)過第一、三象限.

函數(shù)y=-_的圖象從左向右呈下降狀態(tài),即隨_增大y反而減小,經(jīng)過第二、四象限.

歸納:一般地,正比例函數(shù)y=k_(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點的直線.

當(dāng)k0時,圖象經(jīng)過一、三象限,從左向右上升,即隨_的增大y也增大;

當(dāng)k0時,圖象經(jīng)過二、四象限,從左向右下降,即隨_增大y反而減小.

由于正比例函數(shù)y=k_(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=k_.

六、指導(dǎo)應(yīng)用,發(fā)展能力

例2在同一直角坐標(biāo)系中畫出y=_,y=2_,y=3_的函數(shù)圖象,并比較它們的異同點.

相同點:圖象經(jīng)過一、三象限,從左向右上升;

不同點:傾斜度不同,y=_,y=2_,y=3_的函數(shù)圖象離y軸越來越近.

例3在同一直角坐標(biāo)系中畫出y=-_,y=-2_,y=-3_的函數(shù)圖象,并比較它們的異同點.

相同點:圖象經(jīng)過二、四象限,從左向右下降;

不同點:傾斜度不同,y=-_,y=-2_,y=-3_的函數(shù)圖象離y軸越來越近.

在y=k_中,k的絕對值越大,函數(shù)圖象越靠近y軸.

八年級數(shù)學(xué)上冊教案(篇3)

11.1與三角形有關(guān)的線段

11.1.1三角形的邊

1.理解三角形的概念,認(rèn)識三角形的頂點、邊、角,會數(shù)三角形的個數(shù).(重點)

2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點)

3.三角形在實際生活中的應(yīng)用.(難點)

一、情境導(dǎo)入

出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會生活中處處有數(shù)學(xué).

教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.

問:你能不能給三角形下一個完整的定義?

二、合作探究

探究點一:三角形的概念

圖中的銳角三角形有()

A.2個

B.3個

C.4個

D.5個

解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數(shù)有2+1=3(個).故選B.

方法總結(jié):數(shù)三角形的個數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的`一點組成n(n-1)2個三角形.

探究點二:三角形的三邊關(guān)系

類型一判定三條線段能否組成三角形

以下列各組線段為邊,能組成三角形的是()

A.2c,3c,5c

B.5c,6c,10c

C.1c,1c,3c

D.3c,4c,9c

解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.

方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

類型二判斷三角形邊的取值范圍

一個三角形的三邊長分別為4,7,_,那么_的取值范圍是()

A.3<_<11B.4<_<7

C.-3<_<11D._>3

解析:∵三角形的三邊長分別為4,7,_,∴7-4<_<7+4,即3<_<11.故選A.

方法總結(jié):判斷三角形邊的取值范圍要同時運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結(jié)合不等式的知識進(jìn)行解決.

類型三等腰三角形的三邊關(guān)系

已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.

解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.

解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.

方法總結(jié):在求三角形的邊長時,要注意利用三角形的三邊關(guān)系驗證所求出的邊長能否組成三角形.

類型四三角形三邊關(guān)系與絕對值的綜合

若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負(fù),然后去絕對值符號進(jìn)行計算即可.

解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.

三、板書設(shè)計

三角形的邊

1.三角形的概念:

由不在同一直線上的三條線段首尾順次相接所組成的圖形.

2.三角形的三邊關(guān)系:

兩邊之和大于第三邊,兩邊之差小于第三邊.

本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點,既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動手能力.

八年級數(shù)學(xué)上冊教案(篇4)

一.教學(xué)目標(biāo):

1.了解方差的定義和計算公式。

2.理解方差概念的產(chǎn)生和形成的過程。

3.會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

二.重點、難點和難點的突破方法:

1.重點:方差產(chǎn)生的必要性和應(yīng)用方差公式解決實際問題。

2.難點:理解方差公式

3.難點的突破方法:

方差公式:S=[(-)+(-)+…+(-)]比較復(fù)雜,學(xué)生理解和記憶這個公式都會有一定困難,以致應(yīng)用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。

(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運(yùn)動員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動程度,僅僅知道平均數(shù)是不夠的。

(2)波動性可以通過什么方式表現(xiàn)出來?第一環(huán)節(jié)中點明了為什么去了解數(shù)據(jù)的波動性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動性的方法??梢援嬚劬€圖方法來反映這種波動大小,可是當(dāng)波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據(jù)波動大小,這就引出方差產(chǎn)生的必要性。

(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

三.例習(xí)題的意圖分析:

1.教材P125的討論問題的意圖:

(1).創(chuàng)設(shè)問題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。

(2).為引入方差概念和方差計算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數(shù)據(jù)波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學(xué)生體會到學(xué)習(xí)方差的意義和目的。

2.教材P154例1的設(shè)計意圖:

(1).例1放在方差計算公式和利用方差衡量數(shù)據(jù)波動大小的規(guī)律之后,不言而喻其主要目的是及時復(fù)習(xí),鞏固對方差公式的掌握。

(2).例1的解題步驟也為學(xué)生做了一個示范,學(xué)生以后可以模仿例1的格式解決其他類似的實際問題。

四.課堂引入:

除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學(xué)生觀看2004年奧運(yùn)會劉翔勇奪110米欄冠軍的錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學(xué)生也更感興趣一些。

五.例題的分析:

教材P154例1在分析過程中應(yīng)抓住以下幾點:

1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數(shù)據(jù)的什么?學(xué)生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據(jù)波動大小,這一環(huán)節(jié)是明確題意。

2.在求方差之前先要求哪個統(tǒng)計量,為什么?學(xué)生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學(xué)生明確利用方差計算步驟。

3.方差怎樣去體現(xiàn)波動大小?

這一問題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動大小的規(guī)律。

六.隨堂練習(xí):

1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

問:(1)哪種農(nóng)作物的苗長的比較高?

(2)哪種農(nóng)作物的苗長得比較整齊?

2.段巍和金志強(qiáng)兩人參加體育項目訓(xùn)練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?

測試次數(shù)12345

段巍1314131213

金志強(qiáng)1013161412

參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊

2.段巍的成績比金志強(qiáng)的成績要穩(wěn)定。

七.課后練習(xí):

1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。

2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但SS,所以確定去參加比賽。

3.甲、乙兩臺機(jī)床生產(chǎn)同種零件,10天出的次品分別是()

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分別計算出兩個樣本的平均數(shù)和方差,根據(jù)你的計算判斷哪臺機(jī)床的性能較好?

4.小爽和小兵在10次百米跑步練習(xí)中成績?nèi)绫硭荆?單位:秒)

小爽10.810.911.010.711.111.110.811.010.710.9

小兵10.910.910.810.811.010.910.811.110.910.8

如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

答案:1.62.、乙;3.=1.5、S=0.975、=1.5、S=0.425,乙機(jī)床性能好

4.=10.9、S=0.02;

=10.9、S=0.008

選擇小兵參加比賽。

八年級數(shù)學(xué)上冊教案(篇5)

一、教學(xué)目標(biāo)

(一)、知識與技能:

(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

(2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

(二)、過程與方法:

(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

(2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

(三)、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。

二、教學(xué)重點和難點

重點:因式分解的概念及提公因式法。

難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

三、教學(xué)過程

教學(xué)環(huán)節(jié):

活動1:復(fù)習(xí)引入

看誰算得快:用簡便方法計算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2.67×132+25×2.67+7×2.67=;

(3)992–1=。

設(shè)計意圖:

如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進(jìn)行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

活動2:導(dǎo)入課題

P165的探究(略);

2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

設(shè)計意圖:

引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

活動3:探究新知

看誰算得準(zhǔn):

計算下列式子:

(1)3_(_-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根據(jù)上面的算式填空:

(1)a+b+c=;

(2)3_2-3_=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

活動4:歸納、得出新知

比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

a(a+1)(a-1)=a3-a

a3-a=a(a+1)(a-1)

在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學(xué)上冊教案(篇6)

教學(xué)目標(biāo)

知識與能力:

1.運(yùn)用類比的方法,通過學(xué)生的合作探究,得出平行四邊形的判定方法.

2.理解平行四邊形的另一種判定方法,并學(xué)會簡單運(yùn)用.

過程與方法:

1.經(jīng)歷平行四邊行判別條件的探索過程,在有關(guān)活動中發(fā)展學(xué)生的合情推理意識.

2.在運(yùn)用平行四邊形的判定方法解決問題的過程中,進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力和推理論證的表達(dá)能力.

情感、態(tài)度與價值觀:

通過平行四邊形判別條件的探索,培養(yǎng)學(xué)生面對挑戰(zhàn),勇于克服困難的意志,鼓勵學(xué)生大膽嘗試,從中獲得成功的體驗,激發(fā)學(xué)生的學(xué)習(xí)熱情.

教學(xué)方法啟發(fā)誘導(dǎo)式教具三角尺

教學(xué)重點平行四邊形判定方法的探究、運(yùn)用.

教學(xué)難點對平行四邊形判定方法的探究以及平行四邊形的性質(zhì)和判定的綜合運(yùn)用

教學(xué)過程:

第一環(huán)節(jié)復(fù)習(xí)引入:

問題1:

1.平行四邊形的定義是什么?它有什么作用?

2.判定四邊形是平行四邊形的方法有哪些?

(1)兩組對邊分別平行的四邊形是平行四邊形.

(2)一組對邊平行且相等的四邊形是平行四邊形.

(3)兩條對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論