2024屆四川省遂寧市大英縣數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第1頁
2024屆四川省遂寧市大英縣數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第2頁
2024屆四川省遂寧市大英縣數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第3頁
2024屆四川省遂寧市大英縣數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第4頁
2024屆四川省遂寧市大英縣數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆四川省遂寧市大英縣數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,周長為28的菱形中,對角線、交于點,為邊中點,的長等于()A.3.5 B.4 C.7 D.142.如圖,在正方形ABCD中,AB=2,P為對角線AC上的動點,PQ⊥AC交折線于點Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.3.將拋物線y=﹣5x2+1向左平移1個單位長度,再向下平移2個單位長度,所得到的拋物線為()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+34.如圖,中,且,若點在反比例函數(shù)的圖象上,點在反比例函數(shù)的圖象上,則的值為()A. B. C. D.5.關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍為()A. B. C. D.6.如圖所示,是一塊三角形的草坪,現(xiàn)要在草坪上建一涼亭供大家休息,要使涼亭到草坪三條邊的距離相等,涼亭的位置應(yīng)選在()A.△ABC的三條中線的交點 B.△ABC三邊的中垂線的交點C.△ABC三條角平分線的交點 D.△ABC三條高所在直線的交點.7.在△ABC中,∠C=90°,AC=8,BC=6,則sinB的值是()A. B. C. D.8.如圖,是由兩個正方體組成的幾何體,則該幾何體的俯視圖為()A. B. C. D.9.已知是方程的一個根,則代數(shù)式的值等于()A.3 B.2 C.0 D.110.已知反比例函數(shù)y=﹣,下列結(jié)論不正確的是()A.圖象必經(jīng)過點(﹣1,3) B.若x>1,則﹣3<y<0C.圖象在第二、四象限內(nèi) D.y隨x的增大而增大二、填空題(每小題3分,共24分)11.如圖,、、、是上四個點,連接、,過作交圓周于點,連接,若,則的度數(shù)為___________.12.已知P是線段AB的黃金分割點,PA>PB,AB=2cm,則PA為___cm.13.拋物線y=x2﹣4x的對稱軸為直線_____.14.小天想要計算一組數(shù)據(jù)92,90,94,86,99,85的方差S02,在計算平均數(shù)的過程中,將這組數(shù)據(jù)中的每一個數(shù)都減去90,得到一組新數(shù)據(jù)2,0,4,﹣4,9,﹣5,記這組新數(shù)據(jù)的方差為S12,則S12__S02(填“>”,“=”或”<”)15.如圖,反比例函數(shù)y=的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內(nèi)有一點C,滿足AC=BC,當(dāng)點A運動時,點C始終在函數(shù)y=的圖象上運動,tan∠CAB=2,則k=_____.16.如圖,是反比例函數(shù)的圖象上一點,過點作軸交反比例函數(shù)的圖象于點,已知的面積為,則的值為___________.17.如圖,點B,C,D在⊙O上,若∠BCD=130°,則∠BOD的度數(shù)是________°.18.如圖,在中,,,,點為邊上一點,,將繞點旋轉(zhuǎn)得到(點、、分別與點、、對應(yīng)),使,邊與邊交于點,那么的長等于__________.三、解答題(共66分)19.(10分)如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點E,連接AC、OC、BC(1)求證:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的面積.(結(jié)果保留π)20.(6分)如圖,已知點B的坐標(biāo)是(-2,0),點C的坐標(biāo)是(8,0),以線段BC為直徑作⊙A,交y軸的正半軸于點D,過B、C、D三點作拋物線.(1)求拋物線的解析式;(2)連結(jié)BD,CD,點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,連結(jié)CF,在直線BE上找一點P,使得△PFC的周長最小,并求出此時點P的坐標(biāo);(3)在(2)的條件下,拋物線上是否存在點G,使得∠GFC=∠DCF,若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.21.(6分)如圖,在中,,,,求和的長.22.(8分)如圖,已知矩形的邊,,點、分別是、邊上的動點.(1)連接、,以為直徑的交于點.①若點恰好是的中點,則與的數(shù)量關(guān)系是______;②若,求的長;(2)已知,,是以為弦的圓.①若圓心恰好在邊的延長線上,求的半徑:②若與矩形的一邊相切,求的半徑.23.(8分)已知關(guān)于x的一元二次方程(1)當(dāng)m取何值時,這個方程有兩個不相等的實根?(2)若方程的兩根都是正數(shù),求m的取值范圍;(3)設(shè)是這個方程的兩個實根,且,求m的值.24.(8分)一個不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1,﹣3,﹣5,7,這些卡片除數(shù)字外都相同,小芳從口袋中隨機(jī)抽取一張卡片,小明再從剩余的三張卡片中隨機(jī)抽取一張,請你用畫樹狀圖或列表的方法,求兩人抽到的數(shù)字符號相同的概率.25.(10分)某公司2016年10月份營業(yè)額為64萬元,12月份營業(yè)額達(dá)到100萬元,(1)求該公司11、12兩個月營業(yè)額的月平均增長率;(2)如果月平均增長率保持不變,據(jù)此估計明年1月份月營業(yè)額.26.(10分)定義:將函數(shù)C1的圖象繞點P(m,0)旋轉(zhuǎn)180°,得到新的函數(shù)C2的圖象,我們稱函數(shù)C2是函數(shù)C1關(guān)于點P的相關(guān)函數(shù)。例如:當(dāng)m=1時,函數(shù)y=(x-3)2+1關(guān)于點P(1,0)的相關(guān)函數(shù)為y=-(x+1)2-1.(1)當(dāng)m=0時,①一次函數(shù)y=-x+7關(guān)于點P的相關(guān)函數(shù)為_______;②點A(5,-6)在二次函數(shù)y=ax2-2ax+a(a≠0)關(guān)于點P的相關(guān)函數(shù)的圖象上,求a的值;(2)函數(shù)y=(x-2)2+6關(guān)于點P的相關(guān)函數(shù)是y=-(x-10)2-6,則m=_______(3)當(dāng)m-1≤x≤m+2時,函數(shù)y=x2-6mx+4m2關(guān)于點P(m,0)的相關(guān)函數(shù)的最大值為8,求m的值.

參考答案一、選擇題(每小題3分,共30分)1、A【解題分析】根據(jù)菱形的周長求出其邊長,再根據(jù)菱形的性質(zhì)得出對角線互相垂直,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【題目詳解】∵四邊形是菱形,周長為28∴AB=7,AC⊥BD∴OH=故選:A【題目點撥】本題考查的是菱形的性質(zhì)及直角三角形斜邊上的中線等于斜邊的一半,熟練掌握菱形的性質(zhì)是關(guān)鍵.2、B【分析】因為點P運動軌跡是折線,故分兩種情況討論:當(dāng)點P在A—D之間或當(dāng)點P在D—C之間,分別計算其面積,再結(jié)合二次函數(shù)圖象的基本性質(zhì)解題即可.【題目詳解】分兩種情況討論:當(dāng)點Q在A—D之間運動時,,圖象為開口向上的拋物線;當(dāng)點Q在D—C之間運動時,如圖Q1,P1位置,由二次函數(shù)圖象的性質(zhì),圖象為開口向下的拋物線,故選:B.【題目點撥】本題考查二次函數(shù)圖象基本性質(zhì)、其中涉及分類討論法、等腰直角三角形的性質(zhì)等知識,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.3、A【解題分析】分析:直接利用二次函數(shù)圖象與幾何變換的性質(zhì)分別平移得出答案.詳解:將拋物線y=-5x2+1向左平移1個單位長度,得到y(tǒng)=-5(x+1)2+1,再向下平移2個單位長度,所得到的拋物線為:y=-5(x+1)2-1.故選A.點睛:此題主要考查了二次函數(shù)圖象與幾何變換,正確記憶平移規(guī)律是解題關(guān)鍵.4、D【分析】要求函數(shù)的解析式只要求出點B的坐標(biāo)就可以,設(shè)點A的坐標(biāo)是,過點A、B作AC⊥y軸、BD⊥y軸,分別于C、D.根據(jù)條件得到△ACO∽△ODB,利用相似三角形對應(yīng)邊成比例即可求得點B的坐標(biāo),問題即可得解.【題目詳解】如圖,過點A,B作AC⊥y軸,BD⊥y軸,垂足分別為C,D,設(shè)點A的坐標(biāo)是,

則,

∵點A在函數(shù)的圖象上,∴,∵∠AOB=90°,

∴∠AOC+∠BOD=∠AOC+∠CAO=90°,

∴∠CAO=∠BOD,

∴,∴∴,

∴,

∵點B在反比例函數(shù)的圖象上,

∴.故選:D【題目點撥】本題是反比例函數(shù)與幾何的綜合,考查了求函數(shù)的解析式的問題以及相似三角形的判定和性質(zhì),能夠把求反比例函數(shù)的解析式轉(zhuǎn)化為求點的坐標(biāo)的問題是解題的關(guān)鍵.5、B【分析】根據(jù)方程有兩個不等的實數(shù)根,故△>0,得不等式解答即可.【題目詳解】試題分析:由已知得△>0,即(﹣3)2﹣4m>0,解得m<.故選B.【題目點撥】此題考查了一元二次方程根的判別式.6、C【分析】由于涼亭到草坪三條邊的距離相等,所以根據(jù)角平分線上的點到邊的距離相等,可知是△ABC三條角平分線的交點.由此即可確定涼亭位置.【題目詳解】解:∵涼亭到草坪三條邊的距離相等,

∴涼亭選擇△ABC三條角平分線的交點.

故選:C.【題目點撥】本題主要考查的是角平分線的性質(zhì)在實際生活中的應(yīng)用.主要利用了利用了角平分線上的點到角兩邊的距離相等.7、A【分析】先根據(jù)勾股定理計算出斜邊AB的長,然后根據(jù)正弦的定義求解.【題目詳解】如圖,∵∠C=90°,AC=8,BC=6,∴AB==10,∴sinB=.故選:A.【題目點撥】本題考查了正弦的定義:在直角三角形中,一銳角的正弦等于它的對邊與斜邊的比值.也考查了勾股定理.8、D【分析】根據(jù)俯視圖是從上面看得到的圖形進(jìn)行求解即可.【題目詳解】俯視圖為從上往下看,所以小正方形應(yīng)在大正方形的右上角,故選D.【題目點撥】本題考查了簡單組合體的三視圖,熟知俯視圖是從上方看得到的圖形是解題的關(guān)鍵.9、A【分析】根據(jù)題意,將代入方程得,移項即可得結(jié)果.【題目詳解】∵是方程的一個根,∴,∴,故選A.【題目點撥】本題考查一元二次方程的解,已知方程的根,只需將根代入方程即可.10、D【解題分析】A.

∵(?1)×3=?3,∴圖象必經(jīng)過點(?1,3),故正確;B.

∵k=?3<0,∴函數(shù)圖象的兩個分支分布在第二、四象限,故正確;C.

∵x=1時,y=?3且y隨x的增大而而增大,∴x>1時,?3<y<0,故正確;D.函數(shù)圖象的兩個分支分布在第二、四象限,在每一象限內(nèi),y隨x的增大而增大,故錯誤.故選D.二、填空題(每小題3分,共24分)11、【分析】由,利用圓的內(nèi)接四邊形求進(jìn)而求解,利用垂徑定理與等腰三角形的三線合一可得答案.【題目詳解】解:四邊形是的內(nèi)接四邊形,故答案為:【題目點撥】本題考查的是垂徑定理,同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半,圓的內(nèi)接四邊形的性質(zhì),等腰三角形的三線合一,掌握以上知識是解題的關(guān)鍵.12、【分析】把一條線段分割為兩部分,使較大部分與全長的比值等于較小部分與較大的比值,則這個比值即為黃金分割,其比值是【題目詳解】∵P為線段AB的黃金分割點,且PA>PB,AB=2cm,∴故答案為.【題目點撥】分析題意可知,本題主要考查了黃金分割,弄清楚黃金分割的定義是解答此題的關(guān)鍵;13、x=1.【分析】用對稱軸公式直接求解.【題目詳解】拋物線y=x1﹣4x的對稱軸為直線x==﹣=1.故答案為x=1.【題目點撥】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的對稱軸公式x=是本題的解題關(guān)鍵..14、=【分析】根據(jù)一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個非零常數(shù),那么這組數(shù)據(jù)的波動情況不變,即方差不變,即可得出答案.【題目詳解】∵一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上(或都減去)同一個常數(shù)后,它的平均數(shù)都加上(或都減去)這一個常數(shù),兩數(shù)進(jìn)行相減,方差不變,∴則S12=S1.故答案為:=.【題目點撥】本題考查方差的意義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立,關(guān)鍵是掌握一組數(shù)據(jù)都加上同一個非零常數(shù),方差不變.15、-1【分析】連接OC,過點A作AE⊥x軸于點E,過點C作CF⊥y軸于點F,通過角的計算找出∠AOE=∠COF,結(jié)合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根據(jù)相似三角形的性質(zhì)得出比例式,再由tan∠CAB=2,可得出CF?OF的值,進(jìn)而得到k的值.【題目詳解】如圖,連接OC,過點A作AE⊥x軸于點E,過點C作CF⊥y軸于點F.∵由直線AB與反比例函數(shù)y的對稱性可知A、B點關(guān)于O點對稱,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE?OE=2,CF?OF=|k|,∴|k|=CF?OF=2AE×2OE=4AE×OE=1,∴k=±1.∵點C在第二象限,∴k=﹣1.故答案為:﹣1.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征、反比例函數(shù)的性質(zhì)以及相似三角形的判定及性質(zhì),解答本題的關(guān)鍵是求出CF?OF=1.解答該題型題目時,巧妙的利用了相似三角形的性質(zhì)找出對應(yīng)邊的比例,再結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征找出結(jié)論.16、4【分析】如果設(shè)直線AB與x軸交于點C,那么.根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義,求得△AOC的面積和△COB的面積,即可得解.【題目詳解】延長AB交x軸于點C,

根據(jù)反比例函數(shù)k的幾何意義可知:,,

∴,

∴,

解得:.

故答案為:.【題目點撥】本題考查了反比例函數(shù)k的幾何意義,解題的關(guān)鍵是正確理解k的幾何意義.17、【分析】首先圓上取一點A,連接AB,AD,根據(jù)圓的內(nèi)接四邊形的性質(zhì),即可得∠BAD+∠BCD=180°,即可求得∠BAD的度數(shù),再根據(jù)圓周角的性質(zhì),即可求得答案.【題目詳解】圓上取一點A,連接AB,AD,∵點A,B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故答案為100°.【題目點撥】此題考查圓周角定理,圓的內(nèi)接四邊形的性質(zhì),解題關(guān)鍵在于掌握其定義.18、【分析】如圖,作PH⊥AB于H.利用相似三角形的性質(zhì)求出PH,再證明四邊形PHGC′是矩形即可解決問題.【題目詳解】如圖,作PH⊥AB于H.

在Rt△ABC中,∠C=90°,AC=5,sinB=,

∴=,

∴AB=13,BC==12,

∵PC=3,

∴PB=9,

∵∠BPH∽△BAC,

∴,

∴,

∴PH=,

∵AB∥B′C′,

∴∠HGC′=∠C′=∠PHG=90°,

∴四邊形PHGC′是矩形,

∴CG′=PH=,

∴A′G=5-=,

故答案為.【題目點撥】此題考查旋轉(zhuǎn)變換,平行線的性質(zhì),解直角三角形等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.三、解答題(共66分)19、(1)見解析;(2)169π(cm2).【分析】(1)根據(jù)垂徑定理,即可得=,根據(jù)同弧所對的圓周角相等,證出∠BAC=∠BCD,再根據(jù)等邊對等角,即可得到∠BAC=∠ACO,從而證出∠ACO=∠BCD;(2)根據(jù)垂徑定理和勾股定理列出方程,求出圓的半徑,即可求出圓的面積.【題目詳解】解:(1)∵AB為⊙O的直徑,AB⊥CD,∴=.∴∠BAC=∠BCD.∵OA=OC,∴∠BAC=∠ACO.∴∠ACO=∠BCD;(2)∵AB為⊙O的直徑,AB⊥CD,∴CE=CD=×24=12(cm).在Rt△COE中,設(shè)CO為r,則OE=r﹣8,根據(jù)勾股定理得:122+(r﹣8)2=r2解得r=1.∴S⊙O=π×12=169π(cm2).【題目點撥】此題考查的是垂徑定理、等腰三角形的性質(zhì)、圓周角定理推論和求圓的面積,掌握垂徑定理和勾股定理的結(jié)合是解決此題的關(guān)鍵.20、(1);(2);(3)【分析】(1)由BC是直徑證得∠OCD=∠BDO,從而得到△BOD∽△DOC,根據(jù)線段成比例求出OD的長,設(shè)拋物線解析式為y=a(x+2)(x-8),將點D坐標(biāo)代入即可得到解析式;(2)利用角平分線求出,得到,從而得出點F的坐標(biāo)(3,5),再延長延長CD至點,可使,得到(-8,8),求出F的解析式,與直線BD的交點坐標(biāo)即為點P,此時△PFC的周長最小;(3)先假設(shè)存在,①利用弧等圓周角相等把點D、F繞點A順時針旋轉(zhuǎn)90,使點F與點B重合,點G與點Q重合,則Q1(7,3),符合,求出直線FQ1的解析式,與拋物線的交點即為點G1,②根據(jù)對稱性得到點Q2的坐標(biāo),再求出直線FQ2的解析式,與拋物線的交點即為點G2,由此證得存在點G.【題目詳解】(1)∵以線段BC為直徑作⊙A,交y軸的正半軸于點D,∴∠BDO+∠ODC=90,∵∠OCD+∠ODC=90,∴∠OCD=∠BDO,∵∠DOC=∠DOB=90,∴△BOD∽△DOC,∴,∵B(-2,0),C(8,0),∴,解得OD=4(負(fù)值舍去),∴D(0,4)設(shè)拋物線解析式為y=a(x+2)(x-8),∴4=a(0+2)(0-8),解得a=,∴二次函數(shù)的解析式為y=(x+2)(x-8),即.(2)∵BC為⊙A的直徑,且B(-2,0),C(8,0),∴OA=3,A(3,0),∴點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,∴,連接AF,則,∵OA=3,AF=5∴F(3,5)∵∠CDB=90,∴延長CD至點,可使,∴(-8,8),連接F叫BE于點P,再連接PF、PC,此時△PFC的周長最短,解得F的解析式為,BD的解析式為y=2x+4,可得交點P.(3)存在;假設(shè)存在點G,使∠GFC=∠DCF,設(shè)射線GF交⊙A于點Q,①∵A(3,0),F(3,5),C(8,0),D(0,4),∴把點D、F繞點A順時針旋轉(zhuǎn)90,使點F與點B重合,點G與點Q重合,則Q1(7,3),符合,∵F(3,5),Q1(7,3),∴直線FQ1的解析式為,解,得,(舍去),∴G1;②Q1關(guān)于x軸對稱點Q2(7,-3),符合,∵F(3,5),Q2(7,3),∴直線FQ2的解析式為y=-2x+11,解,得,(舍去),∴G2綜上,存在點G或,使得∠GFC=∠DCF.【題目點撥】此題是二次函數(shù)的綜合題,(1)考查待定系數(shù)法求函數(shù)解析式,需要先證明三角形相似,由此求得線段OD的長,才能求出解析式;(2)考查最短路徑問題,此問的關(guān)鍵是求出點F的坐標(biāo),由此延長CD至點,使,得到點的坐標(biāo)從而求得交點P的坐標(biāo);③是難點,根據(jù)等弧所對的圓心角相等將弧DF旋轉(zhuǎn),求出與圓的交點Q1坐標(biāo),從而求出直線與拋物線的交點坐標(biāo)即點G的坐標(biāo);再根據(jù)對稱性求得點Q2的坐標(biāo),再求出直線與拋物線的交點G的坐標(biāo).21、,【分析】作CD⊥AB于D.在Rt△BDC求出CD、BD,在Rt△ACD中求出AD、AC即可解決問題.【題目詳解】解:如圖,過點作于點,在中,,,,在中,,∴,,∴.【題目點撥】本題考查解直角三角形,銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.22、(1)①;②1.5;(2)①5;②、,、5.【解題分析】(1)①根據(jù)直徑所對的圓周角是直角判斷△APQ為等腰三角形,結(jié)合等腰三角形的兩底角相等和圓周角定理證明;②證明△PBQ∽△QBA,由對應(yīng)邊成比例求解;(2)①畫出圖形,由勾股定理列方程求解;②分與矩形的四邊分別相切,畫出圖形,利用切線性質(zhì),由勾股定理列方程求解.【題目詳解】解:(1)①如圖,PQ是直徑,E在圓上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如圖,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如圖,BP=3,BQ=1,設(shè)半徑OP=r,在Rt△OPB中,根據(jù)勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半徑是5.②如圖,與矩形的一邊相切有4種情況,如圖1,當(dāng)與矩形ABCD邊BC相切于點Q,過O作OK⊥AB于K,則四邊形OKBQ為矩形,設(shè)OP=OQ=r,則PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半徑為.如圖2,當(dāng)與矩形ABCD邊AD相切于點N,延長NO交BC于L,則OL⊥BC,過P作PS⊥NL于S,設(shè)OS=x,則ON=OP=OQ=3+x,設(shè)PS=BL=y,由勾股定理得,,解得(舍去),,∴ON=,∴半徑為.如圖3,當(dāng)與矩形ABCD邊CD相切于點M,延長MO交AB于R,則OR⊥AB,過O作OH⊥BC于H,設(shè)OH=BR=x,設(shè)HQ=y,則OM=OP=OQ=4-1-y=3-y,由勾股定理得,,解得(舍去),,∴OM=,∴半徑為.如圖4,當(dāng)與矩形ABCD邊AB相切于點P,過O作OG⊥BC于G,則四邊形AFCG為矩形,設(shè)OF=CG=x,,則OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴半徑為5.綜上所述,若與矩形的一邊相切,為的半徑,,,5.【題目點撥】本題考查圓的相關(guān)性質(zhì),涉及圓周角定理,垂徑定理,切線的性質(zhì)等,綜合性較強,利用分類思想畫出對應(yīng)圖形,化繁為簡是解答此題的關(guān)鍵.23、(1);(2);(3)m無解..【分析】(1)由根的判別式得出不等式,求出不等式的解集即可;(2)由根與系數(shù)的關(guān)系得出不等式,求出不等式的解集即可;(3)由根與系數(shù)的關(guān)系得出x1+x2=2,x1x2=m-1,將變形后代入,即可求出答案.【題目詳解】解:(1)∵這個方程有兩個不相等的實根∴,即解得.(2)由一元二次方程根與系數(shù)的關(guān)系可得:,,∵方程的兩根都是正數(shù)∴,即∴又∵∴m的取值范圍為(3)∵∴即,將,代入可得:,解得.而,所以m=4不符合題意,故m無解.【題目點撥】本題考查了由一元二次方程根的情況求參數(shù),根與系數(shù)的關(guān)系,熟練掌握根的情況與△之間的關(guān)系與韋達(dá)定理是關(guān)鍵.24、.【分析】畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩人抽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論