版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆河南省許昌市名校九年級數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下列方程沒有實數(shù)根的是()A.x2﹣x﹣1=0 B.x2﹣6x+5=0 C.x2﹣2x+3=0 D.x2+x+1=02.若一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),則拋物線y=ax2+bx的對稱軸為()A.直線x=1 B.直線x=﹣2 C.直線x=﹣1 D.直線x=﹣43.三角形的內(nèi)心是()A.三條中線的交點 B.三條高的交點C.三邊的垂直平分線的交點 D.三條角平分線的交點4.學(xué)校門口的欄桿如圖所示,欄桿從水平位置繞點旋轉(zhuǎn)到位置,已知,,垂足分別為,,,,,則欄桿端應(yīng)下降的垂直距離為()A. B. C. D.5.如圖,在菱形ABCD中,點E,F分別在AB,CD上,且,連接EF交BD于點O連接AO.若,,則的度數(shù)為()A.50° B.55° C.65° D.75°6.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,7.下列條件中,能判斷四邊形是菱形的是()A.對角線互相垂直且相等的四邊形B.對角線互相垂直的四邊形C.對角線相等的平行四邊形D.對角線互相平分且垂直的四邊形8.已知Rt△ABC,∠ACB=90o,BC=10,AC=20,點D為斜邊中點,連接CD,將△BCD沿CD翻折得△B’CD,B’D交AC于點E,則的值為()A. B. C. D.9.某果園2017年水果產(chǎn)量為100噸,2019年水果產(chǎn)量為144噸,則該果園水果產(chǎn)量的年平均增長率為()A.10% B.20% C.25% D.40%10.正十邊形的外角和為()A.180° B.360° C.720° D.1440°11.如圖,小穎周末到圖書館走到十字路口處,記不清前面哪條路通往圖書館,那么她能一次選對路的概率是()A. B. C. D.012.同學(xué)們參加綜合實踐活動時,看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:(1)作線段AB,分別以點A,B為圓心,AB長為半徑作弧,兩弧交于點C;(2)以點C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;(3)連接BD,BC.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=二、填空題(每題4分,共24分)13.如圖,BA,BC是⊙O的兩條弦,以點B為圓心任意長為半徑畫弧,分別交BA,BC于點M,N:分別以點M,N為圓心,以大于為半徑畫弧,兩弧交于點P,連接BP并延長交于點D;連接OD,OC.若,則等于__________.14.如圖,的直徑AB與弦CD相交于點,則______.15.剪掉邊長為2的正方形紙片4個直角,得到一個正八邊形,則這個正八邊形的邊長為____________.16.若拋物線經(jīng)過(3,0),對稱軸經(jīng)過(1,0),則_______.17.設(shè)m,n分別為一元二次方程x2+2x-2021=0的兩個實數(shù)根,則m2+3m+n=______.18.如圖,正五邊形內(nèi)接于,為上一點,連接,則的度數(shù)為__________.三、解答題(共78分)19.(8分)如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,建立平面直角坐標系后,的頂點均在格點上,點的坐標為.(1)畫出關(guān)于軸對稱的;寫出頂點的坐標(,),(,).(2)畫出將繞原點按順時針旋轉(zhuǎn)所得的;寫出頂點的坐標(,),(,),(,).(3)與成中心對稱圖形嗎?若成中心對稱圖形,寫出對稱中心的坐標.20.(8分)如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)請直接寫出線段AF,AE的數(shù)量關(guān)系;(2)將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在圖②的基礎(chǔ)上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請說明理由.21.(8分)粵東農(nóng)批﹒2019球王故里五華馬拉松賽于12月1日在廣東五華舉行,組委會為了做好運動員的保障工作,沿途設(shè)置了4個補給站,分別是:A(粵東農(nóng)批)、B(奧體中心)、C(球王故里)和D(濱江中路),志愿者小明和小紅都計劃各自在這4個補給站中任意選擇一個進行補給服務(wù),每個補給站被選擇的可能性相同.(1)小明選擇補給站C(球王故里)的概率是多少?(2)用樹狀圖或列表的方法,求小明和小紅恰好選擇同一個補給站的概率.22.(10分)某商店如果將進貨價為8元的商品按每件11元售出,每天可銷售211件.現(xiàn)在采取提高售價,減少售貨量的方法增加利潤,已知這種商品每漲價1.5元,其銷量減少11件.(1)若漲價x元,則每天的銷量為____________件(用含x的代數(shù)式表示);(2)要使每天獲得711元的利潤,請你幫忙確定售價.23.(10分)已知,如圖1,在中,對角線,,,如圖2,點從點出發(fā),沿方向勻速運動,速度為,過點作交于點;將沿對角線剪開,從圖1的位置與點同時出發(fā),沿射線方向勻速運動,速度為,當點停止運動時,也停止運動.設(shè)運動時間為,解答下列問題:(1)當為何值時,點在線段的垂直平分線上?(2)設(shè)四邊形的面積為,試確定與的函數(shù)關(guān)系式;(3)當為何值時,有最大值?(4)連接,試求當平分時,四邊形與四邊形面積之比.24.(10分)如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),頂點D和點B關(guān)于過點A的直線l:y=﹣x﹣對稱.(1)求A、B兩點的坐標及二次函數(shù)解析式;(2)如圖2,作直線AD,過點B作AD的平行線交直線1于點E,若點P是直線AD上的一動點,點Q是直線AE上的一動點.連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:(3)將二次函數(shù)圖象向右平移個單位,再向上平移3個單位,平移后的二次函數(shù)圖象上存在一點M,其橫坐標為3,在y軸上是否存在點F,使得∠MAF=45°?若存在,請求出點F坐標;若不存在,請說明理由.25.(12分)在平面直角坐標系中,已知拋物線.(1)求拋物線的對稱軸;(2)當時,設(shè)拋物線與軸交于兩點(點在點左側(cè)),頂點為,若為等邊三角形,求的值;(3)過(其中)且垂直軸的直線與拋物線交于兩點.若對于滿足條件的任意值,線段的長都不小于1,結(jié)合函數(shù)圖象,直接寫出的取值范圍.26.已知:如圖,△ABC中,∠BAC=90°,AB=AC=1,點D是BC邊上的一個動點(不與B,C點重合),∠ADE=45°.(1)求證:△ABD∽△DCE;(2)設(shè)BD=x,AE=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;(3)當△ADE是等腰三角形時,請直接寫出AE的長.
參考答案一、選擇題(每題4分,共48分)1、D【解題分析】首先根據(jù)題意判斷上述四個方程的根的情況,只要看根的判別式△=-4ac的值的符號即可.【題目詳解】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有兩個不相等的實數(shù)根,故本選項錯誤;B、∵△=b2﹣4ac=36﹣20=16>0,∴方程有兩個不相等的實數(shù)根,故本選項錯誤;C、∵△=b2﹣4ac=12﹣12=0,∴方程有兩個相等的實數(shù)根,故本選項錯誤;D、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程沒有實數(shù)根,故本選項正確.故選:D.【題目點撥】本題考查根的判別式.一元二次方程的根與△=-4ac有如下關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.2、C【解題分析】∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(﹣2,0),∴﹣2a+b=0,即b=2a.∴拋物線y=ax2+bx的對稱軸為直線.故選C.3、D【分析】根據(jù)三角形的內(nèi)心的定義解答即可.【題目詳解】解:因為三角形的內(nèi)心為三個內(nèi)角平分線的交點,故選:D.【題目點撥】此題主要考查了三角形內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是要熟記內(nèi)心的定義和性質(zhì).4、C【解題分析】分析:根據(jù)題意得△AOB∽△COD,根據(jù)相似三角形的性質(zhì)可求出CD的長.詳解:∵,,∴∠ABO=∠CDO,∵∠AOB=∠COD,∴△AOB∽△COD,∴∵AO=4m,AB=1.6m,CO=1m,∴.故選C.點睛:本題考查了相似三角形的判定與性質(zhì),正確得出△AOB∽△COD是解題關(guān)鍵.5、C【分析】由菱形的性質(zhì)以及已知條件可證明△BOE≌△DOF,然后根據(jù)全等三角形的性質(zhì)可得BO=DO,即O為BD的中點,進而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度數(shù).【題目詳解】∵四邊形ABCD為菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,∴△BOE≌△DOF(AAS)∴OB=OD即O為BD的中點,又∵AB=AD∴AO⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65°故選C.【題目點撥】本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),以及等腰三角形三線合一的性質(zhì),熟練掌握菱形的性質(zhì),得出全等三角形的判定條件是解題的關(guān)鍵.6、D【分析】先將方程左邊提公因式x,解方程即可得答案.【題目詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.【題目點撥】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關(guān)鍵.7、D【解題分析】利用菱形的判定方法對各個選項一一進行判斷即可.【題目詳解】解:A、對角線互相垂直相等的四邊形不一定是菱形,此選項錯誤;B、對角線互相垂直的四邊形不一定是菱形,此選項錯誤;C、對角線相等的平行四邊形也可能是矩形,此選項錯誤;D、對角線互相平分且垂直的四邊形是菱形,此選項正確;故選:D.【題目點撥】本題考查了菱形的判定,平行四邊形的性質(zhì),熟練運用這些性質(zhì)是本題的關(guān)鍵.8、A【分析】如圖,過點B作BH⊥CD于H,過點E作EF⊥CD于F,由勾股定理可求AB的長,由銳角三角函數(shù)可求BH,CH,DH的長,由折疊的性質(zhì)可得∠BDC=∠B'DC,S△BCD=S△DCB'=50,利用銳角三角函數(shù)可求EF=,由面積關(guān)系可求解.【題目詳解】解:如圖,過點B作BH⊥CD于H,過點E作EF⊥CD于F,∵∠ACB=90°,BC=10,AC=20,∴AB=,S△ABC=×10×20=100,∵點D為斜邊中點,∠ACB=90°,∴AD=CD=BD=,∴∠DAC=∠DCA,∠DBC=∠DCB,∴sin∠BCD=sin∠DBC=,∴,∴BH=,∴CH=,∴DH=,∵將△BCD沿CD翻折得△B′CD,∴∠BDC=∠B'DC,S△BCD=S△DCB'=50,∴tan∠BDC=tan∠B'DC=,∴,∴設(shè)DF=3x,EF=4x,∵tan∠DCA=tan∠DAC=,∴,∴FC=8x,∵DF+CF=CD,∴3x+8x=,∴x=,∴EF=,∴S△DEC=×DC×EF=,∴S△CEB'=50-=,∴,故選:A.【題目點撥】本題考查了翻折變換,直角三角形的性質(zhì),銳角三角函數(shù)的性質(zhì),勾股定理等知識,添加恰當輔助線是本題的關(guān)鍵.9、B【分析】2019年水果產(chǎn)量=2017年水果產(chǎn)量,列出方程即可.【題目詳解】解:根據(jù)題意得,解得(舍去)故答案為20%,選B.【題目點撥】本題考查了一元二次方程的應(yīng)用.10、B【分析】根據(jù)多邊的外角和定理進行選擇.【題目詳解】解:因為任意多邊形的外角和都等于360°,
所以正十邊形的外角和等于360°,.
故選B.【題目點撥】本題考查了多邊形外角和定理,關(guān)鍵是熟記:多邊形的外角和等于360度.11、B【分析】在通往圖書館的路口有3條路,一次只能選一條路,則答案可解.【題目詳解】在通往圖書館的路口有3條路,一次只能選一條路,她能一次選對路的概率是故選:B.【題目點撥】本題主要考查隨機事件的概念,掌握隨機事件概率的求法是解題的關(guān)鍵.12、D【分析】由作法得CA=CB=CD=AB,根據(jù)圓周角定理得到∠ABD=90°,點C是△ABD的外心,根據(jù)三角函數(shù)的定義計算出∠D=30°,則∠A=60°,利用特殊角的三角函數(shù)值即可得到結(jié)論.【題目詳解】由作法得CA=CB=CD=AB,故B正確;∴點B在以AD為直徑的圓上,∴∠ABD=90°,故A正確;∴點C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正確;cosD=,故D錯誤,故選:D.【題目點撥】本題考查了解直角三角形,三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和解直角三角形.二、填空題(每題4分,共24分)13、【分析】根據(jù)作圖描述可知BD平分∠ABC,然后利用同弧所對的圓周角是圓心角的一半可求出∠CBD的度數(shù),由∠ABD=∠CBD即可得出答案.【題目詳解】根據(jù)作圖描述可知BD平分∠ABC,∴∠ABD=∠CBD∵∠COD=70°∴∠BCD=∠COD=35°∴∠ABD=35°故答案為:35°.【題目點撥】本題考查了角平分線的作法,圓周角定理,判斷出BD為角平分線,熟練掌握同弧所對的圓周角是圓心角的一半是解題的關(guān)鍵.14、【解題分析】分析:由已知條件易得△ACB中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,結(jié)合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.詳解:∵AB是的直徑,∴∠ACB=90°,又∵AC=3,AB=5,∴BC=,∴tan∠ABC=,又∵∠ADC=∠ABC,∴tan∠ADC=.故答案為:.點睛:熟記“圓的相關(guān)性質(zhì)和正切函數(shù)的定義”解得本題的關(guān)鍵.15、【分析】設(shè)腰長為x,則正八邊形邊長2-2x,根據(jù)勾股定理列方程,解方程即可求出正八邊形的邊.【題目詳解】割掉的四個直角三角形都是等腰直角三角形,設(shè)腰長為x,則正八邊形邊長2-2x,,(舍),,.故答案為:.【題目點撥】本題考查了正方形和正八邊形的性質(zhì)以及勾股定理的運用,解題的關(guān)鍵是設(shè)出未知數(shù)用列方程的方法解決幾何問題.16、1【分析】由題意得,由函數(shù)圖象的對稱軸為直線x=1,根據(jù)點(3,1),求得圖象過另一點(?1,1),代入可得a?b+c=1.【題目詳解】解:由題意得:拋物線對稱軸為直線x=1,又圖象過點(3,1),∵點(3,1)關(guān)于直線x=1對稱的點為(-1,1),
則圖象也過另一點(?1,1),即x=?1時,a?b+c=1.
故答案為:1.【題目點撥】本題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系以及二次函數(shù)的對稱行,重點是確定點(3,1)關(guān)于直線x=1對稱的點為(-1,1).17、1.【分析】根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=2021、m+n=-2,將其代入m2+3m+n中即可求出結(jié)論.【題目詳解】∵m,n分別為一元二次方程x2+2x-2018=0的兩個實數(shù)根,∴m2+2m=2021,m+n=-2,∴m2+3m+n=m2+2m+(m+n)=1+(-2)=1.故答案為1.【題目點撥】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=1、m+n=-2是解題的關(guān)鍵.18、【分析】連接OA,OE.根據(jù)正五邊形求出∠AOE的度數(shù),再根據(jù)圓的有關(guān)性質(zhì)即可解答【題目詳解】如圖,連接OA,OE.∵ABCDE是正五邊形,∴∠AOE==72°,∴∠APE=∠AOE=36°【題目點撥】本題考查了正多邊形和圓的有關(guān)性質(zhì),解題的關(guān)鍵是熟練掌握想關(guān)性質(zhì)并且靈活運用題目的已知條件.三、解答題(共78分)19、(1)作圖見解析,;(2)作圖見解析,;(3)成中心對稱,對稱中心坐標是【分析】(1)根據(jù)關(guān)于軸對稱的點的特征找到A,C的對應(yīng)點,然后順次連接即可,再根據(jù)關(guān)于軸對稱的點橫坐標互為相反數(shù),縱坐標相同即可寫出的坐標;(2)將繞原點O順時針旋轉(zhuǎn)90°得到三點的對應(yīng)點,然后順次連接即可,再根據(jù)直角坐標系即可得到的坐標;(3)利用成中心對稱的概念:如果一個圖形繞某一點旋轉(zhuǎn)180°后與另一個圖形重合,我們就把這兩個圖形叫做成中心對稱判斷即可,然后根據(jù)一組對應(yīng)點相連,其中點就是對稱中心即可得出答案.【題目詳解】解:(1)如圖,根據(jù)關(guān)于y軸對稱的點的特點可知:;(2)如圖,由圖可知,;(3)根據(jù)中心對稱圖形的定義可知與成中心對稱,對稱中心為線段的中點,坐標是.【題目點撥】本題主要考查作軸對稱圖形、中心對稱和作旋轉(zhuǎn)圖形,掌握關(guān)于y軸對稱的點的特點和對稱中心的求法是解題的關(guān)鍵.20、(1)AF=AE;(2)AF=AE,證明詳見解析;(3)結(jié)論不變,AF=AE,理由詳見解析.【分析】(1)如圖①中,結(jié)論:AF=AE,只要證明△AEF是等腰直角三角形即可.(2)如圖②中,結(jié)論:AF=AE,連接EF,DF交BC于K,先證明△EKF≌△EDA再證明△AEF是等腰直角三角形即可.(3)如圖③中,結(jié)論不變,AF=AE,連接EF,延長FD交AC于K,先證明△EDF≌△ECA,再證明△AEF是等腰直角三角形即可.【題目詳解】解:(1)如圖①中,結(jié)論:AF=AE.理由:∵四邊形ABFD是平行四邊形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.(2)如圖②中,結(jié)論:AF=AE.理由:連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如圖③中,結(jié)論不變,AF=AE.理由:連接EF,延長FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【題目點撥】本題考查四邊形綜合題,綜合性較強.21、(1);(2)【分析】(1)共有4個補給站,所以小明選擇補給站C(球王故里)的概率是;(2)用樹狀圖或列表表示出所有的情況數(shù),從中找出小明和小紅恰好選擇同一個補給站的情況數(shù),利用概率公式求解即可.【題目詳解】解:(1)在這4個補給站中任意選擇一個補給站服務(wù),每個補給站被選擇的可能性相同,∴小明選擇補給站C(球王故里)的概率是;(2)畫樹狀圖分析如下:共有16種等可能的結(jié)果,小明和小紅恰好選擇同一個補給站的結(jié)果有4種,∴小明和小紅恰好選擇同一個補給站的概率為=.【題目點撥】本題主要考查樹狀圖或列表法求隨機事件的概率,掌握概率公式是解題的關(guān)鍵.22、(1)211-21x;(2)12元.【解題分析】試題分析:(1)如果設(shè)每件商品提高x元,即可用x表示出每天的銷售量;(2)根據(jù)總利潤=單價利潤×銷售量列出關(guān)于x的方程,進而求出未知數(shù)的值.試題解析:解:(1)211-21x;(2)根據(jù)題意,得(11-8+x)(211-21x)=711,整理得x2-8x+12=1,解得x1=2,x2=3,因為要采取提高售價,減少售貨量的方法增加利潤,所以取x=2.所以售價為11+2=12(元),答:售價為12元.點睛:此題考查了一元二次方程在實際生活中的應(yīng)用.解題的關(guān)鍵是理解題意,找到等量關(guān)系,列出方程.23、(1),(2)四邊形AHGD(3)當四邊形的面積最大,最大面積為(4)【分析】(1)由題意得:利用垂直平分線的性質(zhì)得到:列方程求解即可,(2)四邊形AHGD分別求出各圖形的面積,代入計算即可得到答案,(3)利用(2)中解析式,結(jié)合二次函數(shù)的性質(zhì)求最大面積即可,(4)連接過作于從而求解此時時間,分別求解四邊形EGFD和四邊形AHGE的面積,即可得到答案.【題目詳解】解:(1)如圖,由題意得:及平移的性質(zhì),點在線段的垂直平分線上,當時,點在線段的垂直平分線上.(2),,,又點在上,四邊形AHGD()(3)四邊形AHGD且拋物線的對稱軸是:時,隨的增大而增大,當四邊形的面積最大,最大面積為:(4)如圖,連接過作于平分此時:由四邊形EGFD四邊形ABGE四邊形AHGE.四邊形EGFD:四邊形AHGE【題目點撥】本題考查的是平行四邊形中幾何動態(tài)問題,考查了線段的垂直平分線的性質(zhì),圖形面積的計算,二次函數(shù)的性質(zhì),掌握以上知識是解題的關(guān)鍵.24、(1)A(﹣,0),B(,0);拋物線解析式y(tǒng)=x2+x﹣;(2)12;(3)(0,),(0,﹣)【分析】(1)在y=mx2+3mx﹣m中令y=0,解方程求得x的值即可求得A、B的坐標,繼而根據(jù)已知求出點D的坐標,把點D坐標代入函數(shù)解析式y(tǒng)=mx2+3mx﹣m利用待定系數(shù)法求得m即可得函數(shù)解析式;(2)先求出直線AD解析式,再根據(jù)直線BE∥AD,求得直線BE解析式,繼而可得點E坐標,如圖2,作點P關(guān)于AE的對稱點P',作點E關(guān)于x軸的對稱點E',根據(jù)對稱性可得PQ=P'Q,PE=EP'=P'E',從而有DQ+PQ+PE=DQ+P'Q+P'E',可知當D,Q,E'三點共線時,DQ+PQ+PE值最小,即DQ+PQ+PE最小值為DE',根據(jù)D、E'坐標即可求得答案;(3)分情況進行討論即可得答案.【題目詳解】(1)∵令y=0,∴0=mx2+3mx﹣m,∴x1=,x2=﹣,∴A(﹣,0),B(,0),∴頂點D的橫坐標為﹣,∵直線y=﹣x﹣與x軸所成銳角為30°,且D,B關(guān)于y=﹣x﹣對稱,∴∠DAB=60°,且D點橫坐標為﹣,∴D(﹣,﹣3),∴﹣3=m﹣m﹣m,∴m=,∴拋物線解析式y(tǒng)=x2+x﹣;(2)∵A(﹣,0),D(﹣,﹣3),∴直線AD解析式y(tǒng)=﹣x﹣,∵直線BE∥AD,∴直線BE解析式y(tǒng)=﹣x+,∴﹣x﹣=﹣x+,∴x=,∴E(,﹣3),如圖2,作點P關(guān)于AE的對稱點P',作點E關(guān)于x軸的對稱點E',根據(jù)對稱性可得PQ=P'Q,PE=EP'=P'E',∴DQ+PQ+PE=DQ+P'Q+P'E',∴當D,Q,E'三點共線時,DQ+PQ+PE值最小,即DQ+PQ+PE最小值為DE',∵D(﹣,﹣3),E'(,3),∴DE'=12,∴DQ+PQ+PE最小值為12;(3)∵拋物線y=(x+)2﹣3圖象向右平移個單位,再向上平移3個單位,∴平移后解析式y(tǒng)=x2,當x=3時,y=3,∴M(3,3),如圖3若以AM為直角邊,點M是直角頂點,在AM上方作等腰直角△AME,則∠EAM=45°,直線AE交y軸于F點,作MG⊥x軸,EH⊥MG,則△EHM≌△AMG,∵A(﹣,0),M(3,3),∴E(3﹣3,3+),∴直線AE解析式:y=x+,∴F(0,),若以AM為直角邊,點M是直角頂點,在AM上方作等腰直角△AME,同理可得:F(0,﹣).【題目點撥】本題考查了待定系數(shù)法、軸對稱的性質(zhì)、拋物線的平移、線段和的最小值問題、全等三角形的判定與性質(zhì)等,綜合性較強,有一定的難度,準確
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度專業(yè)演出場地租賃及活動策劃服務(wù)協(xié)議3篇
- 2025年度碼頭貨物短途運輸及環(huán)保處理服務(wù)合同4篇
- 2024-2025學(xué)年高中歷史第五單元近現(xiàn)代中國的先進思想第20課西學(xué)東漸課后習(xí)題含解析岳麓版必修3
- 二零二五版生態(tài)修復(fù)工程承攬合同模板-施工與生態(tài)保護2篇
- 2025年度門衛(wèi)人員安全教育與聘用合同
- 2024版派遣員工合同樣本2篇
- 2025版高端商務(wù)辦公空間租賃合同4篇
- 2024碼頭場地租賃合同
- 2024版天然氣安全運輸合同
- 2024鐵路旅客運輸服務(wù)質(zhì)量監(jiān)督合同3篇
- 運輸供應(yīng)商年度評價表
- 機械點檢員職業(yè)技能知識考試題庫與答案(900題)
- 成熙高級英語聽力腳本
- 北京語言大學(xué)保衛(wèi)處管理崗位工作人員招考聘用【共500題附答案解析】模擬試卷
- 肺癌的診治指南課件
- 人教版七年級下冊數(shù)學(xué)全冊完整版課件
- 商場裝修改造施工組織設(shè)計
- (中職)Dreamweaver-CC網(wǎng)頁設(shè)計與制作(3版)電子課件(完整版)
- 統(tǒng)編版一年級語文上冊 第5單元教材解讀 PPT
- 加減乘除混合運算600題直接打印
- ASCO7000系列GROUP5控制盤使用手冊
評論
0/150
提交評論