2021年中考數(shù)學(xué)真題復(fù)習(xí)匯編:專題18三角形解答題(40題)(第02期)(含解析)_第1頁
2021年中考數(shù)學(xué)真題復(fù)習(xí)匯編:專題18三角形解答題(40題)(第02期)(含解析)_第2頁
2021年中考數(shù)學(xué)真題復(fù)習(xí)匯編:專題18三角形解答題(40題)(第02期)(含解析)_第3頁
2021年中考數(shù)學(xué)真題復(fù)習(xí)匯編:專題18三角形解答題(40題)(第02期)(含解析)_第4頁
2021年中考數(shù)學(xué)真題復(fù)習(xí)匯編:專題18三角形解答題(40題)(第02期)(含解析)_第5頁
已閱讀5頁,還剩73頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題18三角形解答題(40題)姓名:__________________班級:______________得分:_________________專題18三角形解答題(40題)一、解答題1.(2021·廣西中考真題)如圖,點D、E分別是AB、AC的中點,BE、CD相交于點O,∠B=∠C,BD=CE.求證:(1)OD=OE;(2)△ABE≌△ACD.【答案】(1)證明見解析;(2)證明見解析.【分析】(1)根據(jù)∠B=∠C,∠DOB=∠EOC,BD=CE可以用“AAS”證明△DOB≌△EOC,再由全等三角形的性質(zhì),即可得到OD=OE;(2)根據(jù)D、E分別是AB、AC的中點,可以得到AB=2BD,AC=2CE,AD=BD,AE=EC,再根據(jù)BD=CE,即可得到AB=AC,AD=AE,再由∠A=∠A即可用“SAS”證明兩個三角形全等.【詳解】解:(1)∵∠B=∠C,∠DOB=∠EOC,BD=CE∴△DOB≌△EOC(AAS)∴OD=OE;(2)∵D、E分別是AB、AC的中點∴AB=2BD,AC=2CE,AD=BD,AE=EC又∵BD=CE∴AB=AC,AD=AE∵∠A=∠A∴△ABE≌△ACD(SAS)【點睛】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.2.(2021·廣東中考真題)如圖,點E、F在線段BC上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【答案】見解析【分析】利用AAS證明△ABE≌△DCF,即可得到結(jié)論.【詳解】證明:∵SKIPIF1<0,∴∠B=∠C,∵SKIPIF1<0,SKIPIF1<0,∴△ABE≌△DCF(AAS),∴SKIPIF1<0.【點睛】此題考查全等三角形的判定及性質(zhì),熟記全等三角形的判定定理是解題的關(guān)鍵.3.(2021·廣西中考真題)如圖,在平行四邊形ABCD中,點O是對角線BD的中點,EF過點O,交AB于點E,交CD于點F.(1)求證:∠1=∠2;(2)求證:△DOF≌△BOE.【答案】(1)證明見解析;(2)證明見解析.【分析】(1)根據(jù)平行四邊形的性質(zhì)可得AB//CD,根據(jù)平行線的性質(zhì)即可得結(jié)論;(2)由(1)可知∠1=∠2,根據(jù)中點的性質(zhì)可得OD=OB,利用AAS即可證明△DOF≌△BOE.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AB//CD,∴∠1=∠2.(2)∵點O是對角線BD的中點,∴OD=OB,在△DOF和△BOE中,SKIPIF1<0,∴△DOF≌△BOE.【點睛】本題考查平行四邊形的性質(zhì)及全等三角形的判定,熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.4.(2021·湖北中考真題)某海域有一小島P,在以P為圓心,半徑r為SKIPIF1<0海里的圓形海域內(nèi)有暗礁.一海監(jiān)船自西向東航行,它在A處測得小島P位于北偏東SKIPIF1<0的方向上,當(dāng)海監(jiān)船行駛SKIPIF1<0海里后到達(dá)B處,此時觀測小島P位于B處北偏東SKIPIF1<0方向上.(1)求A,P之間的距離AP;(2)若海監(jiān)船由B處繼續(xù)向東航行是否有觸礁危險?請說明理由.如果有觸礁危險,那么海監(jiān)船由B處開始沿南偏東至多多少度的方向航行能安全通過這一海域?【答案】(1)SKIPIF1<0;(2)海監(jiān)船由B處開始沿南偏東小于SKIPIF1<0的方向航行能安全通過這一海域【分析】(1)如圖1,作SKIPIF1<0,交AB的延長線于C,利用等腰直角三角形PBC,含30°角的直角三角形APC計算即可;(2)作差比較x與r的大小,判斷有危險;以P為圓心,半徑r為SKIPIF1<0作圓,作圓的切線SKIPIF1<0計算∠PBD的大小,從而得到∠CBD的大小,從而判斷即可.【詳解】解:(1)如圖1,作SKIPIF1<0,交AB的延長線于C,由題意知:SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0:則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗:SKIPIF1<0是原方程的根,且符合題意,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0.因此海監(jiān)船繼續(xù)向東航行有觸礁危險;設(shè)海監(jiān)船無觸礁危險的新航線為射線BD,以SKIPIF1<0為圓心,SKIPIF1<0為半徑作圓,過SKIPIF1<0作圓P的切線SKIPIF1<0交SKIPIF1<0于點D,∴∠PDB=90°,由(1)得:SKIPIF1<0∴SKIPIF1<0,∴∠PBD=60°,∴∠CBD=15°,∴海監(jiān)船由B處開始沿南偏東小于SKIPIF1<0的方向航行能安全通過這一海域.【點睛】本題考查了方位角,特殊角的三角函數(shù)值,解直角三角形,圓的切線的判定,直徑所對的圓周角是直角,熟練掌握特殊角的三角函數(shù)值,靈活解直角三角形是解題的關(guān)鍵.5.(2021·湖南中考真題)如圖,矩形SKIPIF1<0中為邊SKIPIF1<0上一點,將SKIPIF1<0沿AE翻折后,點B恰好落在對角線SKIPIF1<0的中點F上.(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,求折痕SKIPIF1<0的長度【答案】(1)證明見解析;(2)SKIPIF1<0【分析】(1)由折疊的性質(zhì)證明SKIPIF1<0再證明SKIPIF1<0從而可得結(jié)論;(2)利用折疊與三角形全等的性質(zhì)求解SKIPIF1<0再利用SKIPIF1<0的余弦求解SKIPIF1<0即可.【詳解】解:(1)SKIPIF1<0矩形SKIPIF1<0,SKIPIF1<0由對折可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0由折疊可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0【點睛】本題考查的是矩形的性質(zhì),軸對稱的性質(zhì),三角形全等的判定與性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識解題是解題的關(guān)鍵.6.(2021·廣東中考真題)如圖,在四邊形ABCD中,SKIPIF1<0,點E是AC的中點,且SKIPIF1<0(1)尺規(guī)作圖:作SKIPIF1<0的平分線AF,交CD于點F,連結(jié)EF、BF(保留作圖痕跡,不寫作法);(2)在(1)所作的圖中,若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0為等邊三角形.【答案】(1)圖見解析;(2)證明見解析.【分析】(1)根據(jù)基本作圖—角平分線作法,作出SKIPIF1<0的平分線AF即可解答;(2)根據(jù)直角三角形斜邊中線性質(zhì)得到SKIPIF1<0并求出SKIPIF1<0,再根據(jù)等腰三角形三線合一性質(zhì)得出SKIPIF1<0,從而得到EF為中位線,進(jìn)而可證SKIPIF1<0,SKIPIF1<0,從而由有一個角是60°的等腰三角形是等邊三角形得出結(jié)論.【詳解】解:(1)如圖,AF平分SKIPIF1<0,(2)∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵AF平分SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0為等邊三角形.【點睛】本題主要考查了基本作圖和等腰三角形性質(zhì)以及與三角形中點有關(guān)的兩個定理,解題關(guān)鍵是掌握等腰三角形三線合一定理、直角三角形斜邊中線等于斜邊一半以及三角形中位線定理.7.(2021·湖北中考真題)已知等邊三角形SKIPIF1<0,過A點作SKIPIF1<0的垂線l,點P為l上一動點(不與點A重合),連接SKIPIF1<0,把線段SKIPIF1<0繞點C逆時針方向旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,連SKIPIF1<0.

(1)如圖1,直接寫出線段SKIPIF1<0與SKIPIF1<0的數(shù)量關(guān)系;(2)如圖2,當(dāng)點P、B在SKIPIF1<0同側(cè)且SKIPIF1<0時,求證:直線SKIPIF1<0垂直平分線段SKIPIF1<0;(3)如圖3,若等邊三角形SKIPIF1<0的邊長為4,點P、B分別位于直線SKIPIF1<0異側(cè),且SKIPIF1<0的面積等于SKIPIF1<0,求線段SKIPIF1<0的長度.【答案】(1)AP=BQ;(2)見詳解;(3)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)以及等邊三角形的性質(zhì),可得CP=CQ,∠ACP=∠BCQ,AC=BC,進(jìn)而即可得到結(jié)論;(2)先證明SKIPIF1<0是等腰直角三角形,再求出∠CBD=45°,根據(jù)等腰三角形三線合一的性質(zhì),即可得到結(jié)論;(3)過點B作BE⊥l,過點Q作QF⊥l,根據(jù)SKIPIF1<0,可得AP=BQ,∠CAP=∠CBQ=90°,設(shè)AP=x,則BQ=x,MQ=x-SKIPIF1<0,QF=(x-SKIPIF1<0)×SKIPIF1<0,再列出關(guān)于x的方程,即可求解.【詳解】(1)證明:∵線段SKIPIF1<0繞點C逆時針方向旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,∴CP=CQ,∠PCQ=60°,∵在等邊三角形SKIPIF1<0中,∠ACB=60°,AC=BC,∴∠ACP=∠BCQ,∴SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0;(2)∵SKIPIF1<0,CA⊥l,∴SKIPIF1<0是等腰直角三角形,∵SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,∠CBQ=90°,∵在等邊三角形SKIPIF1<0中,AC=AB,∠BAC=∠ABC=60°,∴AB=AP,∠BAP=90°-60°=30°,∴∠ABP=∠APB=(180°-30°)÷2=75°,∴∠CBD=180°-75°-60°=45°,∴PD平分∠CBQ,∴直線SKIPIF1<0垂直平分線段SKIPIF1<0;(3)①當(dāng)點Q在直線上方時,如圖所示,延長BQ交l與點E,過點Q作SKIPIF1<0與點F,由題意得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即AP的長度為SKIPIF1<0或SKIPIF1<0;②當(dāng)點Q在直線l下方時,過點B作BE⊥l,過點Q作QF⊥l,由(1)小題,可知:SKIPIF1<0,∴AP=BQ,∠CAP=∠CBQ=90°,∵∠ACB=60°,∠CAM=90°,∴∠AMB=360°-60°-90°-90°=120°,即:∠BME=∠QMF=60°,∵∠BAE=90°-60°=30°,AB=4,∴BE=SKIPIF1<0,∴BM=BE÷sin60°=2÷SKIPIF1<0=SKIPIF1<0,設(shè)AP=x,則BQ=x,MQ=x-SKIPIF1<0,QF=MQ×sin60°=(x-SKIPIF1<0)×SKIPIF1<0,∵SKIPIF1<0的面積等于SKIPIF1<0,∴SKIPIF1<0AP×QF=SKIPIF1<0,即:SKIPIF1<0x×(x-SKIPIF1<0)×SKIPIF1<0=SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(不合題意,舍去),∴AP=SKIPIF1<0.綜上所述,AP的長為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.

【點睛】本題主要考查等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),解直角三角形,根據(jù)題意畫出圖形,添加輔助線,構(gòu)造直角三角形,是解題的關(guān)鍵.8.(2021·江蘇)(1)如圖①,O為AB的中點,直線l1、l2分別經(jīng)過點O、B,且l1∥l2,以點O為圓心,OA長為半徑畫弧交直線l2于點C,連接AC.求證:直線l1垂直平分AC;(2)如圖②,平面內(nèi)直線l1∥l2∥l3∥l4,且相鄰兩直線間距離相等,點P、Q分別在直線l1、l4上,連接PQ.用圓規(guī)和無刻度的直尺在直線l4上求作一點D,使線段PD最短.(兩種工具分別只限使用一次,并保留作圖痕跡)【答案】(1)見解析;(2)見解析.【分析】(1)利用平行線等分線段定理證明直線l1平分AC;利用直角三角形的判定證明直線l1垂直AC;(2)以l2與PQ的交點O為圓心,OP長為半徑畫弧交直線l3于點C,連接PC并延長交直線l4于點D,此時線段PD最短,點D即為所求.【詳解】(1)解:如圖①,連接OC,∵OB=OA,l1∥l2,∴直線l1平分AC,由作圖可知:OB=OA=OC,∴∠ACB=90°,∴l(xiāng)2垂直AC,∵l1∥l2,∴l(xiāng)1垂直AC,即直線l1垂直平分AC.(2)如圖②,以l2與PQ的交點O為圓心,OP長為半徑畫弧交直線l3于點C,連接PC并延長交直線l4于點D,此時線段PD最短,點D即為所求.【點睛】本題主要考查了直角三角形的判定,如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形,與考查了尺規(guī)作圖.9.(2021·湖南中考真題)如圖,在SKIPIF1<0中,點SKIPIF1<0在SKIPIF1<0邊上,SKIPIF1<0,將邊SKIPIF1<0繞點SKIPIF1<0旋轉(zhuǎn)到SKIPIF1<0的位置,使得SKIPIF1<0,連接SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求SKIPIF1<0的度數(shù).【答案】(1)見詳解;(2)SKIPIF1<0【分析】(1)由題意易得SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,然后問題可求證;(2)由(1)可得SKIPIF1<0,然后可得SKIPIF1<0,進(jìn)而根據(jù)三角形外角的性質(zhì)可進(jìn)行求解.【詳解】(1)證明:∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴根據(jù)三角形內(nèi)角和可得SKIPIF1<0,∴SKIPIF1<0,由(1)可得SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題主要考查等腰三角形的性質(zhì)及全等三角形的性質(zhì)與判定,熟練掌握等腰三角形的性質(zhì)及全等三角形的性質(zhì)與判定是解題的關(guān)鍵.10.(2021·江蘇中考真題)如圖,將一張長方形紙片SKIPIF1<0沿SKIPIF1<0折疊,使SKIPIF1<0兩點重合.點SKIPIF1<0落在點SKIPIF1<0處.已知SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0是等腰三角形;(2)求線段SKIPIF1<0的長.【答案】(1)見解析;(2)3【分析】(1)根據(jù)矩形的性質(zhì)可得SKIPIF1<0,則SKIPIF1<0,因為折疊,SKIPIF1<0,即可得證;(2)設(shè)SKIPIF1<0用含SKIPIF1<0的代數(shù)式表示SKIPIF1<0,由折疊,SKIPIF1<0,再用勾股定理求解即可【詳解】(1)SKIPIF1<0四邊形SKIPIF1<0是矩形SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因為折疊,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是等腰三角形(2)SKIPIF1<0四邊形SKIPIF1<0是矩形SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0因為折疊,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0中SKIPIF1<0即SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0SKIPIF1<0【點睛】本題考查了矩形的性質(zhì),等腰三角形的判定定理,圖像的折疊,勾股定理,熟悉以上知識點是解題的關(guān)鍵.11.(2021·貴州中考真題)在四邊形ABCD中,對角線AC平分∠BAD.

(探究發(fā)現(xiàn))(1)如圖①,若∠BAD=SKIPIF1<0,∠ABC=∠ADC=SKIPIF1<0.求證:AD+AB=AC;(拓展遷移)(2)如圖②,若∠BAD=SKIPIF1<0,∠ABC+∠ADC=SKIPIF1<0.①猜想AB、AD、AC三條線段的數(shù)量關(guān)系,并說明理由;②若AC=10,求四邊形ABCD的面積.【答案】(1)見解析;(2)①AD+AB=AC,見解析;②SKIPIF1<0【分析】(1)根據(jù)角平分線的性質(zhì)得到∠DAC=∠BAC=SKIPIF1<0,然后根據(jù)直角三角形中SKIPIF1<0是斜邊的一半即可寫出數(shù)量關(guān)系;(2)①根據(jù)第一問中的思路,過點C分別作CE⊥AD于E,CF⊥AB于F,構(gòu)造SKIPIF1<0證明△CFBSKIPIF1<0△CED,根據(jù)全等的性質(zhì)得到FB=DE,結(jié)合第一問結(jié)論即可寫出數(shù)量關(guān)系;②根據(jù)題意應(yīng)用SKIPIF1<0的正弦值求得SKIPIF1<0的長,然后根據(jù)SKIPIF1<0的數(shù)量關(guān)系即可求解四邊形ABCD的面積.【詳解】(1)證明:∵AC平分∠BAD,∠BAD=SKIPIF1<0,∴∠DAC=∠BAC=SKIPIF1<0,∵∠ADC=∠ABC=SKIPIF1<0,∴∠ACD=∠ACB=SKIPIF1<0,∴AD=SKIPIF1<0.∴AD+AB=AC,(2)①AD+AB=AC,理由:過點C分別作CE⊥AD于E,CF⊥AB于F.,∵AC平分∠BAD,∴CF=CE,∵∠ABC+∠ADC=SKIPIF1<0,∠EDC+∠ADC=SKIPIF1<0,∴∠FBC=∠EDC,又∠CFB=∠CED=SKIPIF1<0,∴△CFBSKIPIF1<0△CEDSKIPIF1<0,∴FB=DE,∴AD+AB=AD+FB+AF=AD+DE+AF=AE+AF,在四邊形AFCE中,由⑴題知:AE+AF=AC,∴AD+AB=AC;②在Rt△ACE中,∵AC平分∠BAD,∠BAD=SKIPIF1<0∴∠DAC=∠BAC=SKIPIF1<0,又∵AC=10,∴CE=ASKIPIF1<0,∵CF=CE,AD+AB=AC,∴SKIPIF1<0=SKIPIF1<0.【點睛】本題考查了全等三角形的判定和性質(zhì),角平分線的性質(zhì)和應(yīng)用,解直角三角形,關(guān)鍵是辨認(rèn)出本題屬于角平分線類題型,作垂直類輔助線.12.(2021·吉林中考真題)圖①、圖2均是SKIPIF1<0的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點SKIPIF1<0,點SKIPIF1<0均在格點上,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點均在格點上.(1)在圖①中,以點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點畫一個等腰三角形;(2)在圖②中,以點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點畫一個面積為3的平行四邊形.【答案】(1)見解析;(2)見解析【分析】(1)根據(jù)等腰三角形的定義畫出圖形即可:如以SKIPIF1<0為頂點,SKIPIF1<0為底邊,即可做出等腰三角形;(2)作底為1,高為3的平行四邊形即可.【詳解】解:(1)如圖①中,此時以SKIPIF1<0為頂點,SKIPIF1<0為底邊,該SKIPIF1<0即為所求(答案不唯一).(2)如圖②中,此時底SKIPIF1<0,高SKIPIF1<0,因此四邊形SKIPIF1<0即為所求.【點睛】本題考查了等腰三角形的性質(zhì)和平行四邊形的性質(zhì),解題的關(guān)鍵掌握等腰三角形和平行四邊形的基本性質(zhì).13.(2021·山東中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0的平分線交SKIPIF1<0于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0;交SKIPIF1<0于點SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的度數(shù).【答案】(1)見詳解;(2)SKIPIF1<0【分析】(1)由題意易得SKIPIF1<0,則有SKIPIF1<0,然后問題可求證;(2)由題意易得SKIPIF1<0,則有SKIPIF1<0,然后由(1)可求解.【詳解】(1)證明:∵BD平分SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:∵SKIPIF1<0,∴SKIPIF1<0,由(1)可得SKIPIF1<0.【點睛】本題主要考查等腰三角形的判定、角平分線的定義及平行線的性質(zhì),熟練掌握等腰三角形的判定、角平分線的定義及平行線的性質(zhì)是解題的關(guān)鍵.14.(2021·內(nèi)蒙古中考真題)如圖,在山坡SKIPIF1<0的坡腳A處豎有一根電線桿SKIPIF1<0(即SKIPIF1<0),為固定電線桿,在地面C處和坡面D處各裝一根引拉線SKIPIF1<0和SKIPIF1<0,它們的長度相等.測得SKIPIF1<0米,SKIPIF1<0,求點D到SKIPIF1<0的距離.【答案】SKIPIF1<0【分析】作DE⊥AB于E,BF⊥AP于F,利用三角函數(shù)及勾股定理求出AD的長,再利用三角函數(shù)求出答案即可.【詳解】如圖:作DE⊥AB于E,BF⊥AP于F,在Rt△ABC中,SKIPIF1<0,AC=6,∴AB=8,∴SKIPIF1<0,在Rt△ABF中,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在Rt△ADE中,SKIPIF1<0,∴SKIPIF1<0.∴點D到SKIPIF1<0的距離為SKIPIF1<0米..【點睛】此題考查解直角三角形的實際應(yīng)用,勾股定理的計算,正確理解題意引出輔助線構(gòu)建直角三角形是解題的關(guān)鍵.15.(2021·吉林中考真題)如圖①,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是斜邊SKIPIF1<0上的中線,點SKIPIF1<0為射線SKIPIF1<0上一點,將SKIPIF1<0沿SKIPIF1<0折疊,點SKIPIF1<0的對應(yīng)點為點SKIPIF1<0.(1)若SKIPIF1<0.直接寫出SKIPIF1<0的長(用含SKIPIF1<0的代數(shù)式表示);(2)若SKIPIF1<0,垂足為SKIPIF1<0,點SKIPIF1<0與點SKIPIF1<0在直線SKIPIF1<0的異側(cè),連接SKIPIF1<0,如圖②,判斷四邊形SKIPIF1<0的形狀,并說明理由;(3)若SKIPIF1<0,直接寫出SKIPIF1<0的度數(shù).【答案】(1)SKIPIF1<0;(2)菱形,見解析;(3)SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”得SKIPIF1<0;(2)由題意可得SKIPIF1<0,SKIPIF1<0,由“直角三角形中SKIPIF1<0角所對的直角邊等于斜邊的一半”,得SKIPIF1<0,得SKIPIF1<0,則四邊形SKIPIF1<0是平行四邊形,再由折疊得SKIPIF1<0,于是判斷四邊形SKIPIF1<0是菱形;(3)題中條件是“點SKIPIF1<0是射線SKIPIF1<0上一點”,因此SKIPIF1<0又分兩種情況,即點SKIPIF1<0與點SKIPIF1<0在直線SKIPIF1<0的異側(cè)或同側(cè),正確地畫出圖形即可求出結(jié)果.【詳解】解:(1)如圖①,在SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0是斜邊SKIPIF1<0上的中線,SKIPIF1<0,∴SKIPIF1<0.(2)四邊形SKIPIF1<0是菱形.理由如下:如圖②∵SKIPIF1<0于點SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;由折疊得,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形;∵SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是菱形.(3)如圖③,點SKIPIF1<0與點SKIPIF1<0在直線SKIPIF1<0異側(cè),∵SKIPIF1<0,∴SKIPIF1<0;由折疊得,SKIPIF1<0,∴SKIPIF1<0;如圖④,點SKIPIF1<0與點SKIPIF1<0在直線SKIPIF1<0同側(cè),∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由折疊得,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.綜上所述,SKIPIF1<0或SKIPIF1<0.【點睛】此題主要考查了直角三角形的性質(zhì)、軸對稱的性質(zhì)、平行四邊形及特殊平行四邊形的判定等知識與方法,在解第(3)題時,應(yīng)進(jìn)行分類討論,解題的關(guān)鍵是準(zhǔn)確地畫出圖形,以免丟解.16.(2021·內(nèi)蒙古中考真題)如圖,SKIPIF1<0是SKIPIF1<0的角平分線,SKIPIF1<0,SKIPIF1<0,垂足分別是E、F,連接SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相交千點H.(1)求證:SKIPIF1<0;(2)SKIPIF1<0滿足什么條件時,四邊形SKIPIF1<0是正方形?說明理由.【答案】(1)見解析;(2)SKIPIF1<0滿足∠BAC=90°時,四邊形SKIPIF1<0是正方形,理由見解析【分析】(1)根據(jù)角平分線的的性質(zhì)定理證得DE=DF,再根據(jù)HL定理證明△AED≌△AFD,則有AE=AF,利用等腰三角形的三線合一性質(zhì)即可證得結(jié)論;(2)只需證得四邊形AEDF是矩形即可,【詳解】解:(1)∵SKIPIF1<0是SKIPIF1<0的角平分線,SKIPIF1<0,SKIPIF1<0,∴DE=DF,∠AED=∠AFD=90°,又∵AD=AD,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,又SKIPIF1<0是SKIPIF1<0的角平分線,∴AD⊥EF;(2)SKIPIF1<0滿足∠BAC=90°時,四邊形SKIPIF1<0是正方形,理由:∵∠AED=∠AFD=90°,∠BAC=90°,∴四邊形AEDF是矩形,又∵AE=AF,∴四邊形AEDF是正方形.【點睛】本題考查角平分線的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的三線合一性質(zhì)、矩形的判定、正方形的判定,熟練掌握相關(guān)知識間的聯(lián)系和運(yùn)用是解答的關(guān)鍵.17.(2021·遼寧中考真題)如圖,點A,D,B,E在一條直線上SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.求證:SKIPIF1<0.【答案】見詳解【分析】由題意易得SKIPIF1<0,進(jìn)而易證SKIPIF1<0,然后問題可求證.【詳解】證明:∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.18.(2021·遼寧中考真題)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)找出與SKIPIF1<0相等的角并證明;(2)求證:SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)見解析(3)SKIPIF1<0【分析】(1)根據(jù)三角形外角的性質(zhì)直接求解即可;(2)在BF上截取BP,使AE=BP,即可證明SKIPIF1<0,進(jìn)一步證明SKIPIF1<0和SKIPIF1<0均為等腰三角形且頂角相等,即可證明SKIPIF1<0;(3)由(2)可得SKIPIF1<0,即可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,根據(jù)SKIPIF1<0,可求得SKIPIF1<0,即可證明SKIPIF1<0,列比例求出SKIPIF1<0,代入以上數(shù)據(jù)即可求得SKIPIF1<0的值.【詳解】(1)根據(jù)題意可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)如圖,在BF上截取BP,使AE=BP,由(1)得SKIPIF1<0,即SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0均為等腰三角形,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0和SKIPIF1<0為頂角相等的等腰三角形,SKIPIF1<0,SKIPIF1<0SKIPIF1<0;(3)又(1)可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,由此得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.【點睛】本題主要考查三角形綜合,涉及到的知識點有,等腰三角形判定與性質(zhì),全等三角形的判定與性質(zhì),三角形內(nèi)角和定理,相似三角形的判定與性質(zhì),根據(jù)題意用含字母的式子表示出AE和MF的值是解題關(guān)鍵.19.(2021·內(nèi)蒙古中考真題)如圖,在Rt△ABC中,∠ACB=90°,且AC=AD.(1)作∠BAC的平分線,交BC于點E;(要求尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)的條件下,連接DE,證明SKIPIF1<0.【答案】(1)見解析;(2)見解析【分析】(1)首先以A為圓心,小于AC長為半徑畫弧,交AC、AB于N、M,再分別以N、M為圓心,大于SKIPIF1<0MN長為半徑畫弧,兩弧交于點Q,再畫射線AQ交CB于E;(2)依據(jù)SKIPIF1<0證明SKIPIF1<0得到SKIPIF1<0,進(jìn)一步可得結(jié)論.【詳解】解:(1)如圖,SKIPIF1<0為所作SKIPIF1<0的平分線;(2)證明:如圖.連接DE,由(1)知:SKIPIF1<0在SKIPIF1<0和SKIPIF1<0中∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0【點睛】此題主要考查了基本作圖,以及全等三角形的判定和性質(zhì),關(guān)鍵是得到SKIPIF1<0.20.(2021·廣西中考真題)已知在SKIPIF1<0ABC中,O為BC邊的中點,連接AO,將SKIPIF1<0AOC繞點O順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角為鈍角),得到SKIPIF1<0EOF,連接AE,CF.(1)如圖1,當(dāng)∠BAC=90°且AB=AC時,則AE與CF滿足的數(shù)量關(guān)系是;(2)如圖2,當(dāng)∠BAC=90°且AB≠AC時,(1)中的結(jié)論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;(3)如圖3,延長AO到點D,使OD=OA,連接DE,當(dāng)AO=CF=5,BC=6時,求DE的長.【答案】(1)SKIPIF1<0;(2)成立,證明見解析;(3)SKIPIF1<0【分析】(1)結(jié)論SKIPIF1<0.證明SKIPIF1<0,可得結(jié)論.(2)結(jié)論成立.證明方法類似(1).(3)首先證明SKIPIF1<0,再利用相似三角形的性質(zhì)求出SKIPIF1<0,利用勾股定理求出SKIPIF1<0即可.【詳解】解:(1)結(jié)論:SKIPIF1<0.理由:如圖1中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)結(jié)論成立.理由:如圖2中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(3)如圖3中,由旋轉(zhuǎn)的性質(zhì)可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【點睛】本題屬于幾何變換綜合題,考查了旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,屬于中考壓軸題.21.(2021·廣西中考真題)尺規(guī)作圖(只保留作圖痕跡,不要求寫出作法),如圖,已知SKIPIF1<0ABC,且AB>AC.(1)在AB邊上求作點D,使DB=DC;(2)在AC邊上求作點E,使SKIPIF1<0ADE∽SKIPIF1<0ACB.【答案】(1)見解析;(2)見解析【分析】(1)作線段SKIPIF1<0的垂直平分線交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0即可.(2)作SKIPIF1<0,射線SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,點SKIPIF1<0即為所求.【詳解】解:(1)如圖,點SKIPIF1<0即為所求.(2)如圖,點SKIPIF1<0即為所求.【點睛】本題考查作圖SKIPIF1<0相似變換,線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題.22.(2021·江蘇中考真題)如圖,B、F、C、E是直線l上的四點,SKIPIF1<0.(1)求證:SKIPIF1<0;(2)將SKIPIF1<0沿直線l翻折得到SKIPIF1<0.①用直尺和圓規(guī)在圖中作出SKIPIF1<0(保留作圖痕跡,不要求寫作法);②連接SKIPIF1<0,則直線SKIPIF1<0與l的位置關(guān)系是__________.【答案】(1)見詳解;(2)①見詳解;②平行【分析】(1)根據(jù)“SAS”即可證明SKIPIF1<0;(2)①以點B為圓心,BA為半徑畫弧,以點C為圓心,CA為半徑畫畫弧,兩個弧交于SKIPIF1<0,連接SKIPIF1<0B,SKIPIF1<0C,即可;②過點SKIPIF1<0作SKIPIF1<0M⊥l,過點D作DN⊥l,則SKIPIF1<0M∥DN,且SKIPIF1<0M=DN,證明四邊形SKIPIF1<0MND是平行四邊形,即可得到結(jié)論.【詳解】(1)證明:∵SKIPIF1<0,∴BC=EF,∵SKIPIF1<0,∴∠ABC=∠DEF,又∵SKIPIF1<0,∴SKIPIF1<0;(2)①如圖所示,SKIPIF1<0即為所求;②SKIPIF1<0∥l,理由如下:∵SKIPIF1<0,SKIPIF1<0與SKIPIF1<0關(guān)于直線l對稱,∴SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0M⊥l,過點D作DN⊥l,則SKIPIF1<0M∥DN,且SKIPIF1<0M=DN,∴四邊形SKIPIF1<0MND是平行四邊形,∴SKIPIF1<0∥l,故答案是:平行.【點睛】本題主要考查全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),添加輔助線,構(gòu)造平行四邊形是解題的關(guān)鍵.23.(2021·湖北中考真題)如圖,SKIPIF1<0是SKIPIF1<0的邊SKIPIF1<0上一點,SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于SKIPIF1<0點,SKIPIF1<0.(1)求證:SKIPIF1<0≌SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長.【答案】(1)證明見詳解;(2)1.【分析】(1)根據(jù)SKIPIF1<0證明即可;(2)根據(jù)(1)可得SKIPIF1<0,即由SKIPIF1<0,根據(jù)SKIPIF1<0求解即可.【詳解】(1)證明:SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0;(2)由(1)得SKIPIF1<0SKIPIF1<0∴SKIPIF1<0.【點睛】本題考查全等三角形的判定和性質(zhì)、平行線的性質(zhì)等知識,熟練掌握基本知識是解題的關(guān)鍵.24.(2021·貴州中考真題)如圖,在矩形SKIPIF1<0中,點SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,且SKIPIF1<0,垂足為SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若SKIPIF1<0,求四邊形SKIPIF1<0的面積.【答案】(1)見詳解;(2)4SKIPIF1<0-8【分析】(1)由矩形的性質(zhì)可得∠D=90°,AB∥CD,從而得∠D=∠ANB,∠BAN=∠AMD,進(jìn)而即可得到結(jié)論;(2)由SKIPIF1<0以及勾股定理得AN=DM=4,AB=SKIPIF1<0,進(jìn)而即可求解.【詳解】(1)證明:∵在矩形SKIPIF1<0中,∴∠D=90°,AB∥CD,∴∠BAN=∠AMD,∵SKIPIF1<0,∴∠ANB=90°,即:∠D=∠ANB,又∵SKIPIF1<0,∴SKIPIF1<0(AAS),(2)∵SKIPIF1<0,∴AN=DM=4,∵SKIPIF1<0,∴SKIPIF1<0,∴AB=SKIPIF1<0,∴矩形SKIPIF1<0的面積=SKIPIF1<0×2=4SKIPIF1<0,又∵SKIPIF1<0,∴四邊形SKIPIF1<0的面積=4SKIPIF1<0-4-4=4SKIPIF1<0-8.【點睛】本題主要考查矩形的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),熟練掌握AAS證明三角形全等,是解題的關(guān)鍵.25.(2021·吉林中考真題)圖①、圖②、圖③均是SKIPIF1<0的正方形網(wǎng)格,每個小正方形的邊長均為1.每個小正方形的頂點稱為格點,點A、B、C均為格點,只用無刻度的直尺,分別在給定的網(wǎng)格中找一格點M,按下列要求作圖:(1)在圖①中,連結(jié)MA、MB,使SKIPIF1<0.(2)在圖②中,連結(jié)MA、MB、MC,使SKIPIF1<0.(3)在圖③中,連結(jié)MA、MC,使SKIPIF1<0.【答案】(1)見解析;(2)見解析;(3)見解析【分析】(1)由勾股定理可求得AM=BM=SKIPIF1<0,即可得點M的位置;(2)由勾股定理可求得AB=BC=SKIPIF1<0,AC=SKIPIF1<0,即可得SKIPIF1<0,再由勾股定理的逆定理可判定△ABC為等腰直角三角形,點M即為斜邊AC的中點,由此可得點M的位置;(3)作出AB、AC的垂直平分線,交點即為M,M即為△ABC外接圓的圓心,連接AM,CM,根據(jù)圓周角定理可得SKIPIF1<0,由此即可確定點M的位置.【詳解】(1)如圖①所示,點M即為所求.(2)如圖②所示,點M即為所求.(3)如圖③所示,點M即為所求.【點睛】本題考查了基本作圖,解決第(3)題時,確定△ABC外接圓的圓心是解決問題的關(guān)鍵.26.(2021·湖北中考真題)已知SKIPIF1<0和SKIPIF1<0都為正三角形,點B,C,D在同一直線上,請僅用無刻度的直尺完成下列作圖,不寫作法,保留作圖痕跡.

(1)如圖1,當(dāng)SKIPIF1<0時,作SKIPIF1<0的中線SKIPIF1<0;(2)如圖2,當(dāng)SKIPIF1<0時,作SKIPIF1<0的中線SKIPIF1<0.【答案】(1)圖見解析;(2)圖見解析.【分析】(1)連接SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0即可;(2)先延長SKIPIF1<0,相交于點SKIPIF1<0,再連接SKIPIF1<0,相交于點SKIPIF1<0,然后連接SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0即可.【詳解】解:(1)如圖,連接SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,則SKIPIF1<0即為所求.

(2)分以下三步:①延長SKIPIF1<0,相交于點SKIPIF1<0,②連接SKIPIF1<0,相交于點SKIPIF1<0,③連接SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,則SKIPIF1<0即為所求.

【點睛】本題考查了利用等邊三角形的性質(zhì)作圖、利用線段垂直平分線的判定與性質(zhì)作圖等知識點,熟練掌握等邊三角形的性質(zhì)是解題關(guān)鍵.27.(2021·黑龍江中考真題)(1)如圖,已知SKIPIF1<0為邊SKIPIF1<0上一點,請用尺規(guī)作圖的方法在邊SKIPIF1<0上求作一點SKIPIF1<0.使SKIPIF1<0.(保留作圖痕跡,不寫作法)(2)在上圖中,如果SKIPIF1<0,則SKIPIF1<0的周長是_______SKIPIF1<0.【答案】(1)見解析;(2)9.【分析】(1)直接根據(jù)垂直平分線-尺規(guī)作圖方法作圖即可;(2)根據(jù)(1)中可知SKIPIF1<0,即可求得SKIPIF1<0的周長.【詳解】(1)作法:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論