




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一.解答題(共30小題)1.已知函數(shù)f(x)=lnx+ax?2x(a∈R(Ⅰ)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(Ⅱ)若函數(shù)f(x)有兩個(gè)不同零點(diǎn)x1,x2(x1<x2),(?。┣髮?shí)數(shù)a的取值范圍;(ⅱ)求證:x1?x22>a【解答】解:對(duì)函數(shù)f(x)求導(dǎo),得f′(x)=1x+a2(I)當(dāng)a=﹣2時(shí),f′(x)=?4x?2因?yàn)楹瘮?shù)f(x)的定義域?yàn)椋?,+∞),由f′(x)>0,得0<x<1由f′(x)<0,得x>1所以函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,14),單調(diào)遞減區(qū)間是(1(II)由f(x)=0,得lnx+ax?2x(i)函數(shù)f(x)有兩個(gè)不同零點(diǎn)x1,x2(x1<x2),等價(jià)于方程a=2x?設(shè)t=x,即方程a2=設(shè)g(t)=t?lntg′(t)=1?1?lnt再設(shè)u(t)=t2+lnt﹣1,所以函數(shù)u(t)在(0,+∞)上單調(diào)遞增,注意到u(1)=0,所以當(dāng)0<t<1時(shí),u(t)<0,當(dāng)t>1時(shí),u(t)>0.所以g(t)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.當(dāng)t→0時(shí),g(t)→+∞,當(dāng)t→+∞時(shí),g(t)→+∞,當(dāng)t=1時(shí),g(t)=1,只需a2即所求a>2,即實(shí)數(shù)a的取值范圍是(2,+∞).(ii)注意到t1=x1,t2=x2,要證x1?x22>a24,只需證t由(i)知,0<t1<1<t2,故有a2=t2?lnt2下面證明:t1?t2>1.設(shè)h(t2)=g(t2)﹣g(1t2)=(t2?lnt2t2)﹣(1t2?ln1有h′(t2)=1+1t22?(1?1t22)lnt2﹣(t2所以函數(shù)h(t2)在(1,+∞)上單調(diào)遞減,所以h(t2)<h(1)=0,所以g(t2)﹣g(1t2)<0,故有g(shù)(1t2)>g(t2)=g又0<1t2<1,0<t1<1,且g(t)在(0,1)上單調(diào)遞減,所以1t2<t1因此t1?t22>a2.已知函數(shù)f(x)=1+x2ekx,g(x)=2(Ⅰ)若函數(shù)f(x)沒有極值點(diǎn),求實(shí)數(shù)k的取值范圍;(Ⅱ)若g(x)≤f(x)對(duì)任意的x∈R恒成立,求實(shí)數(shù)k和a所滿足的關(guān)系式,并求實(shí)數(shù)k的取值范圍.【解答】解:(Ⅰ)函數(shù)f(x)=1+x2f′(x)=2x因?yàn)楹瘮?shù)f(x)沒有極值點(diǎn),所以f′(x)≥0或f′(x)≤0恒成立,當(dāng)k=0時(shí),f(x)=1+x2,有極值點(diǎn),不符合題意;當(dāng)k≠0時(shí),則Δ=4﹣4k2≤0,解得k≥1或k≤﹣1,綜上可得,實(shí)數(shù)k的取值范圍是(﹣∞,﹣1]∪[1,+∞).(Ⅱ)由題意得,對(duì)任意的x∈R,h(x)=1+x2ekx?因?yàn)閔(0)=0,所以x=0是y=h(x)的極小值點(diǎn),所以h′(0)=0,得a=﹣k,即對(duì)任意的x∈R,恒有(1+x2)eax≥2ax2+ax+1成立,其中a=﹣k,①當(dāng)a>0時(shí),當(dāng)x→﹣∞時(shí),(1+x2)eax→0,2ax2+ax+1→+∞,矛盾,舍;②當(dāng)a≤0時(shí),g(x)=2ax2+ax+1圖象開口向下,過點(diǎn)(0,1),g′(x)=4ax+a,則g′(0)=a,所以g(x)在點(diǎn)(0,1)處的切線方程為y=ax+1,所以有ax+1≥2ax2+ax+1,下證(1+x2)eax≥ax+1,令m(x)=(1+ax)e﹣ax﹣(1+x2),又因?yàn)閙′(x)=ae﹣ax﹣a(1+ax)e﹣ax﹣2x=﹣x(2+a2e﹣ax),當(dāng)x∈(﹣∞,0)時(shí),m′(x)>0,m(x)單調(diào)遞增,當(dāng)x∈(0,+∞)時(shí),m′(x)<0,m(x)單調(diào)遞減,所以m(x)≤m(0)=0,所以(1+x2)eax≥ax+1成立,所以(1+x2)eax≥ax+1≥2ax2+ax+1,綜上所述,當(dāng)k=﹣a≥0時(shí),g(x)≤f(x)對(duì)任意的x∈R恒成立.3.已知函數(shù)f(x)=(x+1)lnx﹣x+1.(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范圍;(Ⅱ)證明:(x﹣1)f(x)≥0.【解答】解:(Ⅰ)函數(shù)的定義域?yàn)椋?,+∞)求導(dǎo)函數(shù),可得f'(x)=x+1∴xf′(x)=xlnx+1,題設(shè)xf′(x)≤x2+ax+1等價(jià)于lnx﹣x≤a,令g(x)=lnx﹣x,則g′(x)=1當(dāng)0<x<1時(shí),g′(x)>0;當(dāng)x≥1時(shí),g′(x)≤0,∴x=1是g(x)的最大值點(diǎn),∴g(x)≤g(1)=﹣1.…(6分)綜上,a的取值范圍是[﹣1,+∞).…(7分)(Ⅱ)由(Ⅰ)知,g(x)≤g(1)=﹣1,即lnx﹣x+1≤0;當(dāng)0<x<1時(shí),f(x)=(x+1)lnx﹣x+1=xlnx+(lnx﹣x+1)<0;…(10分)當(dāng)x≥1時(shí),f(x)=lnx+(xlnx﹣x+1)=lnx+x(lnx+1所以(x﹣1)f(x)≥0…(13分)4.已知a>1,函數(shù)f(x)=ex?12x2﹣ax﹣1,其中(Ⅰ)證明:函數(shù)y=f(x)在(0,+∞)上有唯一零點(diǎn);(Ⅱ)記x0為函數(shù)y=f(x)在(0,+∞)上的零點(diǎn),證明:x0<a.(參考數(shù)值:ln4.6≈1.53)【解答】證明:(Ⅰ)f′(x)=ex﹣x﹣a,f″(x)=ex﹣1>0在x∈(0,+∞)上恒成立,所以f′(x)在(0,+∞)上單調(diào)遞增,f′(0)=1﹣a<0,f′(a)=ea﹣2a>(e﹣2)a>0,所以存在x1∈(0,a),使得f′(x1)=0,故f″(x)<0?x∈(0,x1),f(x)在(0,x1)上單調(diào)遞減;f″(x)>0?x∈(x1,+∞),f(x)在(x1,+∞)上單調(diào)遞增,又f(0)=0,所以f(x1)<0,當(dāng)x→+∞時(shí),f(x)→+∞,故由零點(diǎn)存在定理,f(x)在(x1,+∞)上有唯一零點(diǎn),在(0,x1)上沒有零點(diǎn),所以函數(shù)f(x)在(0,+∞)上有唯一零點(diǎn).(Ⅱ)由(Ⅰ)得:f(x)在(x1,+∞)上單調(diào)遞增,且a>x1,x0>x1,故要證:x0<a,只要證f(x0)<f(a),即證:ea?32a2﹣1>0在設(shè)g(a)=ea?32a2﹣1,故g′(a)=ea﹣3a,g″(a)=e由g″(a)=0?a=ln3,所以g′(a)在(1,ln3)遞減,在(ln3,+∞)遞增,g′(1)=e﹣3<0,g′(ln3)=3﹣3ln3<0,g′(ln4.6)=4.6﹣3×ln4.6>4.6﹣3×1.53>0,所以存在x2∈(ln3,ln4.6),使得g′(x2)=0,所以g(a)在(1,x2)遞減,(x2,+∞)遞增,所以g(a)min=g(x3),因?yàn)間(1)=e?52>0,故只需證明g(x2)=e由g′(x2)=0?ex2=3x2,所以g(x2)=?32x22+3x2﹣1,x2∈由二次函數(shù)的單調(diào)性,得g(x2)>?32(ln4.6)2+3ln4.6﹣1>?3綜上,得證.5.已知函數(shù)f(x)=31+x?4lnx8,g(x)=x4+mx3+nx2+mx+10,m,n∈(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;(Ⅱ)若對(duì)任意x1∈(0,+∞),總存在x2∈R,使得f(x1)=g(x2),求m2+n2的最小值.【解答】解:(1)首先函數(shù)f(x)的定義域?yàn)椋?,+∞),f'(x)=321+x?4x,令f所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(0,8),單調(diào)遞增區(qū)間為(8,+∞).(2)因?yàn)閷?duì)任意x1∈(0,+∞),存在x2∈R,使得f(x1)=g(x2),所以{f(x)|x>0}?{g(x)|x∈R},由(1)知,f(x)≥f(8)=9,又x→+∞時(shí),g(x)→+∞,且為連續(xù)函數(shù),所以g(x)min≤9,故g(x)=9?x4+mx3+nx2+mx+1=0有解,顯然x≠0,所以x2?t=x+1則關(guān)于t的方程t2+mt+n﹣2=0在(﹣∞,﹣2]∪[2,+∞)上有解,方法1(幾何意義):將(m,n)看成直線tm+n+t2﹣2=0上的點(diǎn),m2+n2看作點(diǎn)(m,n)到原點(diǎn)的距離的平方,則m2由t2+1∈[5,+∞),且函數(shù)y=x+9得m2+n方法2(柯西不等式):因?yàn)椋╩2+n2)(t2+1)≥(mt+n)2,所以m2下同方法1.綜上,m2+n2的最小值為456.已知函數(shù)f(x)=lnxx2+a(x>0),其中(Ⅰ)討論函數(shù)f(x)的單調(diào)性;(Ⅱ)若e2[(x﹣1)2(x+1)+lnx]<e2xlnx,求x的取值范圍;(Ⅲ)當(dāng)a=3e4時(shí),若x1,x2為函數(shù)g(x)=f(x)﹣m(m∈R)的兩個(gè)零點(diǎn),試證明:4e2(x1+e2)(x【解答】解:(1)f'(x)=x+極值點(diǎn)即為f'(x)的變號(hào)零點(diǎn),即a=2x2lnx﹣x2=x2(2lnx﹣1),記h(x)=x2(2lnx﹣1),h′(x)=4xlnx,令h′(x)>0,解得x>1;令h′(x)<0,解得0<x<1,故h(x)在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增,則h(x)≥h(1)=﹣1,當(dāng)x→0+,h(x)→0,當(dāng)x→+∞,h(x)→+∞,①當(dāng)a≤﹣1時(shí),f'(x)≤0在區(qū)間(0,?a)∪(?a,+∞)上恒成立,所以函數(shù)f(x)在區(qū)間②當(dāng)﹣1<a<0時(shí),則方程a=2x2lnx﹣x2=x2(2lnx﹣1)有兩個(gè)根,記為x1,x2,不妨設(shè)x1<1<x2,因?yàn)?(?a)<a,故當(dāng)0<x<x1或x>x2時(shí),f'(x)<0;當(dāng)x1<x<?a或?a<x<x2時(shí),f'(所以函數(shù)f(x)在(0,x1),(x2,+∞)上單調(diào)遞增,在(x1,?a),(?a,x2)上單調(diào)遞減.③當(dāng)a>0時(shí),則方程a=2x2lnx﹣x2=x2(2lnx﹣1)有一個(gè)根,記為x3,當(dāng)0<x<x3時(shí),f'(x)>0;當(dāng)x>x3時(shí),f'(x)<0,所以函數(shù)f(x)在(0,x3)上單調(diào)遞增,在(x3,+∞)上單調(diào)遞減.(2)e2[(x﹣1)2(x+1)+lnx]<e2xlnx,即(x﹣1)(x2﹣1)<e2(x﹣1)lnx﹣lnx,當(dāng)x=1時(shí),左邊=右邊(舍);當(dāng)x>1時(shí),x2﹣1>0,e2(x﹣1)﹣1>0,當(dāng)x<1時(shí),x2﹣1<0,e2(x﹣1)﹣1<0,即當(dāng)x≠1時(shí),(x2﹣1)?(e2(x﹣1)﹣1)>0,于是x?1e即將a=﹣1時(shí),f(ex﹣1)<f(x),由(1)知,當(dāng)a≤﹣1時(shí),f(x)在(0,+∞)上單調(diào)遞減,所以f(ex﹣1)<f(x)?ex﹣1>x(x∈(0,+∞)),由于y=ex﹣1與y=x在x=1處相切,且.y=ex﹣1為下凹函數(shù),故x∈(0,1)∪(1,+∞).(3)f'(x)=x+即a=2x2lnx﹣x2=x2(2lnx﹣1),∵a=3e4,∴x0由(I)知:當(dāng)a>0時(shí),f(x)先增后減,不妨設(shè)1<xg(x1構(gòu)造函數(shù)φ(x)=lnx?2(x?φ'(x)=1∴l(xiāng)nx<2(x?即lnx兩式相減得:m(x即4eμ'(x)=1∴l(xiāng)nx>x即lnx兩式相減得:m(x即m(x∴1e+e綜上所述:4e7.已知函數(shù)f(x)=ax2+lnx(a∈R).(1)當(dāng)a=12時(shí),求f(x)在區(qū)間[1,(2)如果函數(shù)g(x),f1(x),f2(x),在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“活動(dòng)函數(shù)“.已知函數(shù)f1(x)=(a?12)x2+2ax+(1?a2)lnx,f2(x)=12x2+2ax.若在區(qū)間(1,+∞)上函數(shù)【解答】解:(1)當(dāng)a=12時(shí),f(x)=1對(duì)于x∈[1,e],有f'(x)>0,∴f(x)在區(qū)間[1,e]上為增函數(shù),∴fmax(x)=f(e)=1+e(2)在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“活動(dòng)函數(shù)”,則f1(x)<f(x)<f2(x)令p(x)=f(x)?f2(x)=(a?1且h(x)=f1(x)﹣f(x)=?12x2∵p'(x)=(2a?1)x?2a+1)若a>12,令p′(x)=0,得極值點(diǎn)x1=1,當(dāng)x2>x1=1,即12<a<1時(shí),在(x2,+∞)上有p′(此時(shí)p(x)在區(qū)間(x2,+∞)上是增函數(shù),并且在該區(qū)間上有p(x)∈(p(x2),+∞),不合題意;當(dāng)x2<x1=1,即a≥1時(shí),同理可知,p(x)在區(qū)間(1,+∞)上,有p(x)∈(p(1),+∞),也不合題意;2)若a≤12,則有2a﹣1≤0,此時(shí)在區(qū)間(1,+∞)上恒有p′(從而p(x)在區(qū)間(1,+∞)上是減函數(shù);要使p(x)<0在此區(qū)間上恒成立,只須滿足p(1)=?a?1所以?12≤又因?yàn)閔′(x)=﹣x+2a?a2x=?h(x)<h(1)=?12+2a綜合可知a的范圍是[?12,8.設(shè)函數(shù)f(x)=xlnx(x>0).(1)求函數(shù)f(x)的最小值;(2)設(shè)F(x)=ax2+f′(x)(a∈R),討論函數(shù)F(x)的單調(diào)性;(3)斜率為k的直線與曲線y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)兩點(diǎn),求證:x1【解答】(1)解:f′(x)=lnx+1(x>0),令f′(x)=0,得x=1∵當(dāng)x∈(0,1e)時(shí),f′(x)<0;當(dāng)x∈(1e∴當(dāng)x=1e時(shí),(2)F(x)=ax2+lnx+1(x>0),F(xiàn)'(x)=2ax+1①當(dāng)a≥0時(shí),恒有F'(x)>0,F(xiàn)(x)在(0,+∞)上是增函數(shù);(6分)②當(dāng)a<0時(shí),令F′(x)>0,得2ax2+1>0,解得0<x<?令F′(x)<0,得2ax2+1<0,解得x>?綜上,當(dāng)a≥0時(shí),F(xiàn)(x)在(0,+∞)上是增函數(shù);當(dāng)a<0時(shí),F(xiàn)(x)在(0,?12a(3)證:k=f'(要證x1<1k<x2則只要證1<t?1lnt<t,由t>1知lnt>0,故等價(jià)于證lnt<t﹣1<tlnt①設(shè)g(t)=t﹣1﹣lnt(t≥1),則g'(t)=1?1t≥0(t≥1),故g∴當(dāng)t>1時(shí),g(t)=t﹣1﹣lnt>g(1)=0,即t﹣1>lnt(t>1).②設(shè)h(t)=tlnt﹣(t﹣1)(t≥1),則h′(t)=lnt≥0(t≥1),故h(t)在[1,+∞)上是增函數(shù),∴當(dāng)t>1時(shí),h(t)=tlnt﹣(t﹣1)>h(1)=0,即t﹣1<tlnt(t>1).由①②知(*)成立,得證.(14分)9.已知函數(shù)f(x)=x+1x+alnx,a(1)討論y=f(x)在區(qū)間[1,e]上的單調(diào)性;(2)若對(duì)任意的x∈[1,e],都有2e≤f(x)≤2e恒成立,求實(shí)數(shù)【解答】解:函數(shù)f(x)=x+1x+alnx,a∈R(1)f'(x)=1?1x2+ax=x2方程x2+ax﹣1=0,有兩個(gè)不同的根m=?a+a2+4當(dāng)x∈(0,m)時(shí),f‘(x)<0,f(x)遞減,當(dāng)x∈(m,+∞)時(shí),f‘(x)>0,f(x)遞增;當(dāng)0<m≤1時(shí),即0<?a+a2+42≤1,得a≥0時(shí),函數(shù)當(dāng)1<m<e時(shí),即1<?a+a2+42<e,得1e?e<a<0,f(當(dāng)m≥e時(shí),a≤1e?e,f(x(2)根據(jù)(1)f(x)的單調(diào)性可知,當(dāng)a≥0時(shí),函數(shù)f(x)在[1,e]單調(diào)遞增,f(1)=2>2e,f(e)=e+1e當(dāng)a≤1e?e,f(x)在[1,e]遞減;f(x)的最大值為f(1)=2,最小值f(e)=e+1e+a≥2當(dāng)1e?e<a<0,f(x)在[1,m]遞減,[m,e]遞增,對(duì)任意的x∈[1,e],都有2e≤f(x)≤2e恒成立,又22e≤f(e)=e+1e只需f(x)的最小值為f(x1)=x1+因?yàn)閤12+ax代入上式構(gòu)造函數(shù)h(t)=t+1t+(1t?t)lnt,t∈(1,e),則h'(所以函數(shù)y=h(t)在(1,e)上單調(diào)遞減,故h(t)>h(e)=2e成立,故1綜上,實(shí)數(shù)a的取值范圍是[1e?e,e10.已知函數(shù)f(x)=x﹣alnx.(Ⅰ)若f(x)≥1恒成立,求a的取值范圍:(Ⅱ)在(Ⅰ)的條件下,f(x)=m有兩個(gè)不同的根x1,x2,求證:x1+x2>m+1.【解答】解:(Ⅰ)f(x)=x﹣alnx,則f′(x)=1?ax=∴當(dāng)a≤0時(shí),∴f′(x)>0恒成立,∴f(x)在定義域(0,+∞)上單調(diào)遞增,∵當(dāng)x→0時(shí),f(x)→﹣∞,不符合題意;當(dāng)a>0時(shí),令f′(x)=0,得x=a,∴x>a時(shí),f′(x)>0;0<x<a時(shí),f′(x)<0.∴f(x)在(0,a)上單調(diào)遞減,在(a,+∞)上單調(diào)遞增,∴f(x)min=f(a)=a﹣alna≥1.令g(x)=x﹣xlnx,則g′(x)=﹣lnx,易知g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.∴g(x)≤g(1)=1,∴a=1.∴a的取值范圍為{1}.(Ⅱ)證明:由(Ⅰ)可得f(x)=x﹣lnx在x=1處取到極小值1,∵x→0時(shí),f(x)→+∞,x→+∞時(shí),f(x)→+∞,∴m>1,不妨設(shè)0<x1<1<x2,則要證明x1+x2>m+1,只需證明x2>m+1﹣x1.∵f(x)在(1,+∞)遞增,且x2>m+1﹣x1>1,故只需證明f(x2)>f(m+1﹣x1),即證明m>f(m+1﹣x1),即證明m>m+1﹣x1﹣ln(m+1﹣x1),即證明1﹣x1﹣ln(m+1﹣x1)=1﹣x1﹣ln(x1﹣lnx1+1﹣x1)<0,即證明1﹣x1<ln(1﹣lnx1),即證明e1﹣x+lnx﹣1<0,令G(x)=e1﹣x+lnx﹣1(0<x<1),則G'(x)=?e∴G(x)在(0,1)上單調(diào)遞增,又G(x)<G(1)=0,∴x1+x2>m+1成立.11.已知函數(shù)f(x)=12ax2+(1﹣2a)x﹣2lnx,a∈(1)討論f(x)的單調(diào)性;(2)若不等式f(x)≥32在(0,1)上恒成立,求實(shí)數(shù)【解答】解:(1)∵f(x)=12ax2+(1﹣2a)x﹣2lnx,∴f′(x)=a①當(dāng)a≥0時(shí),令f′(x)<0,得0<x<2;令f′(x)>0,得x>2;②當(dāng)a<0時(shí),令f′(x)=0,得x=?1a或(Ⅰ)當(dāng)?1a>2,即?12<a<0時(shí),令f′(x)<0,得0<x<2或x>?1a(Ⅱ)當(dāng)?1a=2時(shí),即a=?12(Ⅲ)當(dāng)?1a<2時(shí),即a<?12時(shí),令f′(x)<0,得0<x<?1a或x>2;令綜上所述:當(dāng)a≥0時(shí),f(x)在(0,2)上遞減,在(2,+∞)上遞增;當(dāng)?12<a<0時(shí),f(x)在(0,2)和(?當(dāng)a=?12時(shí),f(當(dāng)a<?12時(shí),f(x)在(0,?1(2)由(1)得①當(dāng)a≥?12時(shí),f(∴f(1)=1?32a≥3②當(dāng)a<?1(Ⅰ)當(dāng)?1a≤1,即a≤﹣1時(shí),f(x)在(0,?∴f(?1a)=2?12a+2ln(﹣a(Ⅱ)當(dāng)?1a>1,即﹣1<a<?12∴f(1)=1?32a>74綜上,實(shí)數(shù)a的取值范圍為(﹣∞,?112.已知函數(shù)f(x)=x?1(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;(2)若函數(shù)y=g(x)對(duì)任意x滿足g(x)=f(4﹣x),求證:當(dāng)x>2,f(x)>g(x);(3)若x1≠x2,且f(x1)=f(x2),求證:x1+x2>4.【解答】解:(1)∵f(x)=x?1ex,∴f'(x令f'(x)=0,解得x=2.x(﹣∞,2)2(2,+∞)f'(x)+0﹣f(x)↗極大值1↘∴f(x)在(﹣∞,2)內(nèi)是增函數(shù),在(2,+∞)內(nèi)是減函數(shù).(3分)∴當(dāng)x=2時(shí),f(x)取得極大值f(2)=1(2)證明:g(x)=f(4?x)=3?xe4?x∴F'(x)=2?x當(dāng)x>2時(shí),2﹣x<0,2x>4,從而e4﹣e2x<0,∴F'(x)>0,F(xiàn)(x)在(2,+∞)是增函數(shù).∴F(x)>F(2)=1(3)證明:∵f(x)在(﹣∞,2)內(nèi)是增函數(shù),在(2,+∞)內(nèi)是減函數(shù).∴當(dāng)x1≠x2,且f(x1)=f(x2),x1、x2不可能在同一單調(diào)區(qū)間內(nèi).不妨設(shè)x1<2<x2,由(2)可知f(x2)>g(x2),又g(x2)=f(4﹣x2),∴f(x2)>f(4﹣x2).∵f(x1)=f(x2),∴f(x1)>f(4﹣x2).∵x2>2,4﹣x2<2,x1<2,且f(x)在區(qū)間(﹣∞,2)內(nèi)為增函數(shù),∴x1>4﹣x2,即x1+x2>4.(12分)13.已知函數(shù)f(x)=2(Ⅰ)若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調(diào)區(qū)間;(Ⅱ)若對(duì)于?x∈(0,+∞)都有f(x)>2(a﹣1)成立,試求a的取值范圍;(Ⅲ)記g(x)=f(x)+x﹣b(b∈R).當(dāng)a=1時(shí),函數(shù)g(x)在區(qū)間[e﹣1,e]上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.【解答】解:(Ⅰ)直線y=x+2的斜率為1,函數(shù)f(x)的定義域?yàn)椋?,+∞),因?yàn)閒'(x)=?2x2+a所以,f(x)=2x+lnx?2,f'(x)=x?2x2.由f'(x)>0解得x>2;由所以f(x)的單調(diào)增區(qū)間是(2,+∞),單調(diào)減區(qū)間是(0,2).(Ⅱ)f'(x)=?2x2+ax=ax?2x2,由f'(所以,f(x)在區(qū)間(2a,+∞)所以,當(dāng)x=2a時(shí),函數(shù)f(x)取得最小值,ymin=f(2a).因?yàn)閷?duì)于?x∈所以,f(2a)>2(a?1)即可.則22a所以,a的取值范圍是(0,2(Ⅲ)依題得g(x)=2x+lnx+x?2?b由g'(x)>0解得x>1;由g'(x)<0解得0<x<1.所以函數(shù)g(x)在區(qū)間(0,1)為減函數(shù),在區(qū)間(1,+∞)為增函數(shù).又因?yàn)楹瘮?shù)g(x)在區(qū)間[e﹣1,e]上有兩個(gè)零點(diǎn),所以g(e解得1<b≤2e+e?1.所以,b14.設(shè)函數(shù)f(x)=x3﹣6x+5,x∈R(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;(Ⅱ)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.【解答】解:(Ⅰ)f'(x)=3(∴當(dāng)x<?2∴f(x)的單調(diào)遞增區(qū)間是(?∞,?2)和(當(dāng)x=?2,f(x)有極大值5+4(Ⅱ)由(Ⅰ)的分析可知y=f(x)圖象的大致形狀及走向,∴當(dāng)5?42即方程f(x)=α有三解.15.函數(shù)f(x)=lnx?1x,g(x)=ax+(1)若函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;(2)若直線g(x)=ax+b是函數(shù)f(x)=lnx?1x圖象的切線,求a+(3)當(dāng)b=0時(shí),若f(x)與g(x)的圖象有兩個(gè)交點(diǎn)A(x1,y1),B(x2,y2),試比較x1x2與2e2的大小.(取e為2.8,取ln2為0.7,取2為1.4)【解答】解:(1):h(x)=f(x)﹣g(x)=lnx?1x?ax則h′(x)=1x∵h(yuǎn)(x)=f(x)﹣g(x)在(0,+∞)上單調(diào)遞增,∴對(duì)?x>0,都有h′(x)=1x即對(duì)?x>0,都有a≤1∵1x+1故實(shí)數(shù)a的取值范圍是(﹣∞,0];(2):設(shè)切點(diǎn)(x0,lnx0?1x0),則切線方程為y﹣(lnx0?1x0)=(1x0+1x02)(x﹣x0),即y=(,亦即y=(1x0+1x02令1x0=t,由題意得a=t+t2,b=﹣lnt令a+b=φ(t)=﹣lnt+t2﹣t﹣1,則φ′(x)=?1t+2t當(dāng)t∈(0,1)時(shí),φ'(t)<0,φ(t)在(0,1)上單調(diào)遞減;當(dāng)t∈(1,+∞)時(shí),φ'(t)>0,φ(t)在(1,+∞)上單調(diào)遞增,∴a+b=φ(t)≥φ(1)=﹣1,故a+b的最小值為﹣1;(Ⅲ):由題意知lnx1?1x1=ax1,lnx2兩式相加得lnx1x2?x1+x2x1x兩式相減得lnx2x1?x1?x即lnx2∴l(xiāng)nx1x2?x1+x2x1x2即lnx1x2﹣2×x1+不妨令0<x1<x2,記t=x令F(t)=lnt?2(t?1)t+1(t>1),則F′(t)∴F(t)=lnt?2(t?1)則F(t)>F(1)=0,∴l(xiāng)nt>2(t?1)t+1,則ln∴l(xiāng)nx1x2﹣2×x1+∴l(xiāng)nx1x2﹣2×x1+x2x1x2∴2lnx1x2?令G(x)=lnx?2x,則x>0時(shí),G′(x)∴G(x)在(0,+∞)上單調(diào)遞增,又ln2e?22e=∴G(x1x2)=lnx1x2則x1x即x1x2>2e2.16.設(shè)函數(shù)f(x)=lnx?12ax2﹣(Ⅰ)當(dāng)a=b=12時(shí),求函數(shù)f((Ⅱ)令F(x)=f(x)+12ax2+bx+ax(0<x≤3)若其圖象上的任意點(diǎn)P(x0,y0)處切線的斜率(Ⅲ)當(dāng)a=0,b=﹣1時(shí),方程x2=2mf(x)(其中m>0)有唯一實(shí)數(shù)解,求m的值.【解答】解:(I)依題意,知f(x)的定義域?yàn)椋?,+∞),當(dāng)a=b=12時(shí),f(x)=lnx?1令f'(x)=0,解得x=1.(∵x>0)因?yàn)間(x)=0有唯一解,所以g(x2)=0,當(dāng)0<x<1時(shí),f'(x)>0,此時(shí)f(x)單調(diào)遞增;當(dāng)x>1時(shí),f'(x)<0,此時(shí)f(x)單調(diào)遞減.所以f(x)的極大值為f(1)=?3(II)F(x)=lnx+ax,x∈(0,3],則有k=F'(x0)=所以a≥(?12x0當(dāng)x0=1時(shí),?12x所以a≥1(III)因?yàn)榉匠?mf(x)=x2有唯一實(shí)數(shù)解,所以x2﹣2mlnx﹣2mx=0有唯一實(shí)數(shù)解,設(shè)g(x)=x2﹣2mlnx﹣2mx,則g'(x)=2令g'(x)=0,x2﹣mx﹣m=0.因?yàn)閙>0,x>0,所以x1=m?當(dāng)x∈(0,x2)時(shí),g'(x)<0,g(x)在(0,x2)上單調(diào)遞減,當(dāng)x∈(x2,+∞)時(shí),g'(x)>0,g(x)在(x2,+∞)單調(diào)遞增當(dāng)x=x2時(shí),g'(x2)=0,g(x)取最小值g(x2).(12′)則g(x2所以2mlnx2+mx2﹣m=0,因?yàn)閙>0,所以2lnx2+x2﹣1=0(*)設(shè)函數(shù)h(x)=2lnx+x﹣1,因?yàn)楫?dāng)x>0時(shí),h(x)是增函數(shù),所以h(x)=0至多有一解.因?yàn)閔(1)=0,所以方程(*)的解為x2=1,即m+m2+4m17.已知函數(shù)f(x)=(x3﹣6x2+3x+t)ex,t∈R.(1)若函數(shù)y=f(x)依次在x=a,x=b,x=c(a<b<c)處取到極值.①求t的取值范圍;②若a+c=2b2,求t的值.(2)若存在實(shí)數(shù)t∈[0,2],使對(duì)任意的x∈[1,m],不等式f(x)≤x恒成立.求正整數(shù)m的最大值.【解答】解:(1)①f'(x)=(3x2﹣12x+3)ex+(x3﹣6x2+3x+t)ex=(x3﹣3x2﹣9x+t+3)ex∵f(x)有3個(gè)極值點(diǎn),∴x3﹣3x2﹣9x+t+3=0有3個(gè)根a,b,c.令g(x)=x3﹣3x2﹣9x+t+3,g'(x)=3x2﹣6x﹣9=3(x+1)(x﹣3),g(x)在(﹣∞,﹣1),(3,+∞)上遞增,(﹣1,3)上遞減.∵g(x)有3個(gè)零點(diǎn)∴g(?1)>0g(3)<0∴﹣8<t②∵a,b,c是f(x)的三個(gè)極值點(diǎn),∴x3﹣3x2﹣9x+t+3=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+bc+ac)x﹣abc∴a+b+c=3∴b=1或?32(舍∵b∴a=1?23b=1c=1+2(2)不等式f(x)≤x,即(x3﹣6x2+3x+t)ex≤x,即t≤xe﹣x﹣x3+6x2﹣3x.轉(zhuǎn)化為存在實(shí)數(shù)t∈[0,2],使對(duì)任意的x∈[1,m],不等式t≤xe﹣x﹣x3+6x2﹣3x恒成立.即不等式0≤xe﹣x﹣x3+6x2﹣3x在x∈[1,m]上恒成立.即不等式0≤e﹣x﹣x2+6x﹣3在x∈[1,m]上恒成立.設(shè)φ(x)=e﹣x﹣x2+6x﹣3,則φ'(x)=﹣e﹣x﹣2x+6.設(shè)r(x)=φ'(x)=﹣e﹣x﹣2x+6,則r'(x)=e﹣x﹣2,因?yàn)?≤x≤m,有r'(x)<0.故r(x)在區(qū)間[1,m]上是減函數(shù).又r(1)=4﹣e﹣1>0,r(2)=2﹣e﹣2>0,r(3)=﹣e﹣3<0故存在x0∈(2,3),使得r(x0)=φ'(x0)=0.當(dāng)1≤x<x0時(shí),有φ'(x)>0,當(dāng)x>x0時(shí),有φ'(x)<0.從而y=φ(x)在區(qū)間[1,x0]上遞增,在區(qū)間[x0,+∞)上遞減.又φ(1)=e﹣1+4>0,φ(2)=e﹣2+5>0,φ(3)=e﹣3+6>0,φ(4)=e﹣4+5>0,φ(5)=e﹣5+2>0,φ(6)=e﹣6﹣3<0.所以當(dāng)1≤x≤5時(shí),恒有φ(x)>0;當(dāng)x≥6時(shí),恒有φ(x)<0;故使命題成立的正整數(shù)m的最大值為5.18.已知函數(shù)f(x)=ln(2ax+1)+x33?x2﹣2ax((1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;(3)當(dāng)a=?12時(shí),方程f(1﹣x)=(1?x)【解答】解:(1)f'(x)=2a因?yàn)閤=2為f(x)的極值點(diǎn),所以f'(2)=0.…(2分)即2a4a+1?2a=0,解得又當(dāng)a=0時(shí),f'(x)=x(x﹣2),從而x=2為f(x)的極值點(diǎn)成立.…(4分)(2)因?yàn)閒(x)在區(qū)間[3,+∞)上為增函數(shù),所以f'(x)=x[2a①當(dāng)a=0時(shí),f'(x)=x(x﹣2)≥0在[3,+∞)上恒成立,所以f(x)在[3,+∞)上為增函數(shù),故a=0符合題意.…(6分)②當(dāng)a≠0時(shí),由函數(shù)f(x)的定義域可知,必須有2ax+1>0對(duì)x≥3恒成立,故只能a>0,所以2ax2+(1﹣4a)x﹣(4a2+2)≥0對(duì)x∈[3,+∞)上恒成立.…(7分)令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其對(duì)稱軸為x=1?1因?yàn)閍>0所以1?14a<1,從而g(x因?yàn)間(3)=﹣4a2+6a+1≥0,解得3?13因?yàn)閍>0,所以0<a≤3+由①可得,a=0時(shí),符合題意;綜上所述,a的取值范圍為[0,3+13(3)若a=?12時(shí),方程f(1?x)=(1?x)問題轉(zhuǎn)化為b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,即求函數(shù)g(x)=xlnx+x2﹣x3的值域.…(11分)以下給出兩種求函數(shù)g(x)值域的方法:方法1:因?yàn)間(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),則?'(x)=1所以當(dāng)0<x<1,h′(x)>0,從而h(x)在(0,1)上為增函數(shù),當(dāng)x>1,h′(x)<0,從而h(x')在(1,+∞上為減函數(shù),…(13分)因此h(x)≤h(1)=0.而x>1,故b=x?h(x)≤0,因此當(dāng)x=1時(shí),b取得最大值0.…(14分)方法2:因?yàn)間(x)=x(lnx+x﹣x2),所以g'(x)=lnx+1+2x﹣3x2.設(shè)p(x)=lnx+1+2x﹣3x2,則p'(x)=1當(dāng)0<x<1+76時(shí),p'(x)>0,所以p(x當(dāng)x>1+76時(shí),p'(x)<0,所以p(x因?yàn)閜(1)=0,故必有p(1+76因此必存在實(shí)數(shù)x0∈(1e2,∴當(dāng)0<x<x0時(shí),g′(x)<0,所以g(x)在(0,x0)上單調(diào)遞減;當(dāng)x0<x<1,g′(x)>0,所以,g(x)在(x0,1)上單調(diào)遞增;又因?yàn)間(x)=xlnx+x當(dāng)x→0時(shí),lnx+14<0,則g(x因此當(dāng)x=1時(shí),b取得最大值0.…(14分)19.已知函數(shù)f(x)=ln(12+12(Ⅰ)若x=12是函數(shù)f(x)的一個(gè)極值點(diǎn),求(Ⅱ)求證:當(dāng)0<a≤2時(shí),f(x)在[1(Ⅲ)若對(duì)任意的a∈(1,2),總存在x0∈[12,1],使不等式f(x0)>m(1﹣【解答】解:由題得:f'(x)=1(Ⅰ)由已知,得f'(12)=0且a2?22a≠0,∴a2經(jīng)檢驗(yàn):a=2符合題意.(2分)(Ⅱ)當(dāng)0<a≤2時(shí),∵a2?22a∴當(dāng)x≥12時(shí),x?a∴f'(x)≥0,故f(x)在[1(Ⅲ)a∈(1,2)時(shí),由(Ⅱ)知,f(x)在[12,1]于是問題等價(jià)于:對(duì)任意的a∈(1,2),不等式ln(1記g(a)=ln(12+則g'(a)=1當(dāng)m=0時(shí),g'(a)=?a1+a<0,∴g(a)在區(qū)間(1,2)上遞減,此時(shí),g(a由于a2﹣1>0,∴m≤0時(shí)不可能使g(a)>0恒成立,故必有m>0,∴g'(a)=2ma若12m?1>1,可知g(a)在區(qū)間(1,min{2,12m?1})上遞減,在此區(qū)間上,有g(shù)(a)<g(1)=0,與g這時(shí),g'(a)>0,g(a)在(1,2)上遞增,恒有g(shù)(a)>g(1)=0,滿足題設(shè)要求,∴m>012m?1≤1所以,實(shí)數(shù)m的取值范圍為[120.已知a為常數(shù),a∈R,函數(shù)f(x)=x2+ax﹣lnx,g(x)=ex.(其中e是自然對(duì)數(shù)的底數(shù))(Ⅰ)過坐標(biāo)原點(diǎn)O作曲線y=f(x)的切線,設(shè)切點(diǎn)為P(x0,y0),求證:x0=1;(Ⅱ)令F(x)=f(x)g(x),若函數(shù)F(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求【解答】解:(I)f'(x)=2x+a?1x(過切點(diǎn)P(x0,y0)的切線的斜率k=2整理得x0顯然,x0=1是這個(gè)方程的解,又因?yàn)閥=x2+lnx﹣1在(0,+∞)上是增函數(shù),所以方程x2+lnx﹣1=0有唯一實(shí)數(shù)解.故x0=1.…(6分)(Ⅱ)F(x)=f(x)g(x)=設(shè)?(x)=?x2+(2?a)x+a?易知h'(x)在(0,1]上是減函數(shù),從而h'(x)≥h'(1)=2﹣a.…(10分)(1)當(dāng)2﹣a≥0,即a≤2時(shí),h'(x)≥0,h(x)在區(qū)間(0,1)上是增函數(shù).∵h(yuǎn)(1)=0,∴h(x)≤0在(0,1]上恒成立,即F'(x)≤0在(0,1]上恒成立.∴F(x)在區(qū)間(0,1]上是減函數(shù).所以,a≤2滿足題意.…(12分)(2)當(dāng)2﹣a<0,即a>2時(shí),設(shè)函數(shù)h'(x)的唯一零點(diǎn)為x0,則h(x)在(0,x0)上遞增,在(x0,1)上遞減.又∵h(yuǎn)(1)=0,∴h(x0)>0.又∵h(yuǎn)(e﹣a)=﹣e﹣2a+(2﹣a)e﹣a+a﹣ea+lne﹣a<0,∴h(x)在(0,1)內(nèi)有唯一一個(gè)零點(diǎn)x',當(dāng)x∈(0,x')時(shí),h(x)<0,當(dāng)x∈(x',1)時(shí),h(x)>0.從而F(x)在(0,x')遞減,在(x',1)遞增,與在區(qū)間(0,1]上是單調(diào)函數(shù)矛盾.∴a>2不合題意.綜合(1)(2)得,a≤2.…(15分)21.設(shè)f(x)=px?px?(Ⅰ)若f(x)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)p的取值范圍;(Ⅱ)設(shè)g(x)=2ex,且p>0,若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)【解答】解:(I)由f(x)=px?px?得f'(x)=p+p要使f(x)在其定義域(0,+∞)內(nèi)為單調(diào)增函數(shù),只需f′(x)≥0,即px2﹣2x+p≥0在(0,+∞)內(nèi)恒成立,…(5分)從而P≥1.…(7分)(II)解法1:g(x)=2ex在[1,所以[g(x)]min=g(e)=2,[g(x)]max=g(1)=2e,即g(x)∈[2,2e].當(dāng)0<p<1時(shí),由x∈[1,e],得x?1故f(x)=p(x?1當(dāng)P≥1時(shí),由(I)知f(x)在[1,e]連續(xù)遞增,f(1)=0<2,又g(x)在[1,e]上是減函數(shù),∴原命題等價(jià)于[f(x)]max>[g(x)]min=2,x∈[1,e],…(12分)由[f(x)]max=f(e)=p(e?1綜上,p的取值范圍是(4ee解法2:原命題等價(jià)于f(x)﹣g(x)>0在[1,e)上有解,設(shè)F(x)=f(x)﹣g(x)=px?px?2∵F'(x)=p+=p∴F(x)是增函數(shù),…(10分)∴[F(x)]max=F(e)>0,解得p>4e∴p的取值范圍是(4ee22.已知函數(shù)f(x)=alnx+x2(a為實(shí)常數(shù)).(1)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);(2)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.【解答】解:(1)當(dāng)a=﹣2時(shí),f(x)=x2﹣2lnx,當(dāng)x∈(1,+∞),f'(x)=2((2)f'(x)=2x2+ax(x>0),當(dāng)x∈[1,e],2x2+a∈[a若a≥﹣2,f'(x)在[1,e]上非負(fù)(僅當(dāng)a=﹣2,x=1時(shí),f'(x)=0),故函數(shù)f(x)在[1,e]上是增函數(shù),此時(shí)[f(x)]min=f(1)=1.若﹣2e2<a<﹣2,當(dāng)x=?a2時(shí),f'(當(dāng)1≤x<?a2時(shí),f'(x)<0,此時(shí)f(當(dāng)?a2<x≤e時(shí),f'(x)>0,此時(shí)f(故[f(x)]min=f(?a若a≤﹣2e2,f'(x)在[1,e]上非正(僅當(dāng)a=﹣2e2,x=e時(shí),f'(x)=0),故函數(shù)f(x)在[1,e]上是減函數(shù),此時(shí)[f(x)]min=f(e)=a+e2.綜上可知,當(dāng)a≥﹣2時(shí),f(x)的最小值為1,相應(yīng)的x值為1;當(dāng)﹣2e2<a<﹣2時(shí),f(x)的最小值為a2ln(?a2)?a2,相應(yīng)的x值為?a2;當(dāng)a≤﹣2e2時(shí),f相應(yīng)的x值為e.(3)不等式f(x)≤(a+2)x,可化為a(x﹣lnx)≥x2﹣2x.∵x∈[1,e],∴l(xiāng)nx≤1≤x且等號(hào)不能同時(shí)取,所以lnx<x,即x﹣lnx>0,因而a≥x2?2xx?lnx(x令g(x)=x2?2xx?lnx(x∈[1,當(dāng)x∈[1,e]時(shí),x﹣1≥0,lnx≤1,x+2﹣2lnx>0,從而g'(x)≥0(僅當(dāng)x=1時(shí)取等號(hào)),所以g(x)在[1,e]上為增函數(shù),故g(x)的最小值為g(1)=﹣1,所以a的取值范圍是[﹣1,+∞).23.已知函數(shù)f(x)=2lnx﹣x2.(Ⅰ)求函數(shù)y=f(x)在[1(Ⅱ)如果函數(shù)g(x)=f(x)﹣ax的圖象與x軸交于兩點(diǎn)A(x1,0)、B(x2,0),且0<x1<x2.y=g′(x)是y=g(x)的導(dǎo)函數(shù),若正常數(shù)p,q滿足p+q=1,q≥p.求證:g′(px1+qx2)<0.【解答】解:(Ⅰ)由f(x)=2lnx﹣x2得到:f'(x)=∵x∈[12,2],故f′(x)=0在x=1有唯一的極值點(diǎn),f(12)=?2ln2?14,f(2)=2ln2﹣4,且知f(2)<f(12)<f(1)(Ⅱ)∵g'(x)=2x?2x?a,又f(x)﹣ax=0有兩個(gè)不等的實(shí)根x1則2lnx1于是g'=2∵2p≤1,x2>x1>0,∴(2p﹣1)(x2﹣x1)≤0要證:g′(px1+qx2)<0,只需證:2只需證:x2令x1x2=t,0<t<1,只需證:u(t)=1?t又∵u'∵p+q=1,q≥12,則qp≥1,∴q2p故知u′(t)>0∴u(t)在t∈(0,1)*u上為增函數(shù),則u(t)<u(1)=0,從而知x2?x24.已知函數(shù)f(x)=13x3+bx2+cx+d,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x﹣12,f′(x)為f(x)的導(dǎo)函數(shù),滿足f′(2﹣x)=f′((Ⅰ)設(shè)g(x)=xf'(x),m>0,求函數(shù)g(x)在[0,m(Ⅱ)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1﹣t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.【解答】(本小題滿分14分)解:(Ⅰ)f′(x)=x2+2bx+c,∵f′(2﹣x)=f′(x),∴函數(shù)y=f′(x)的圖象關(guān)于直線x=1對(duì)稱,則b=﹣1.∵直線y=4x﹣12與x軸的交點(diǎn)為(3,0),∴f(3)=0,且f′(x)=4,即9+9b+3c+d=0,且9+6b+c=4,解得c=1,d=﹣3.則f(x)=1故f′(x)=x2﹣2x+1=(x﹣1)2,g(x)=x(x?1)2=x|x如圖所示.當(dāng)x2?x=14(ⅰ)當(dāng)x<m≤12時(shí),g(x)最大值為m﹣m(ⅱ)當(dāng)12<m≤1+22時(shí),g(ⅲ)當(dāng)m>1+22時(shí),g(x)最大值為m2(Ⅱ)h(x)=ln(x﹣1)2=2ln|x﹣1|,則h(x+1﹣t)=2ln|x﹣t|,h(2x+2)=2ln|2x+1|,∵當(dāng)x∈[0,1]時(shí),|2x+1|=2x+1,∴不等式2ln|x﹣t|<2ln|2x+1|恒成立等價(jià)于|x﹣t|<2x+1,且x≠t恒成立,由|x﹣t|<2x+1恒成立,得﹣x﹣1<t<3x+1恒成立,∵當(dāng)x∈[0,1]時(shí),3x+1∈[1,4],﹣x﹣1∈[﹣2,﹣1],∴﹣1<t<1,又∵當(dāng)x∈[0,1]時(shí),由x≠t恒成立,得t?[0,1],因此,實(shí)數(shù)t的取值范圍是﹣1<t<0.…(14分)25.已知二次函數(shù)g(x)對(duì)任意實(shí)數(shù)x都滿足g(x﹣1)+g(1﹣x)=x2﹣2x﹣1,且g(1)=﹣1.令f(x)=2g(x+(1)求g(x)的表達(dá)式;(2)若函數(shù)f(x)在x∈[1,+∞)上的最小值為0,求m的值;(3)記函數(shù)H(x)=[x(x﹣a)2﹣1]?[﹣x2+(a﹣1)x+a﹣1],若函數(shù)y=H(x)有5個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.【解答】解:(1)設(shè)g(x)=ax2+bx+c,于是g(x﹣1)+g(1﹣x)=2a(x﹣1)2+2c=2(x﹣1)2﹣2,所以a=又g(1)=﹣1,則b=?12.所以(2)f(x)=2g(則f'(x)=2x+m?3令f'(x)=0,得x=?3m2(舍),x=①當(dāng)m>1時(shí),x1(1,m)m(m,+∞)f'(x)﹣0+f(x)1+m↘2m2﹣3m2lnm↗∴當(dāng)x=m時(shí),fmin令2m2﹣3m2lnm=0,得m=e②當(dāng)0<m≤1時(shí),f'(x)≥0在x∈[1,+∞)上恒成立,f(x)在x∈[1,+∞)上為增函數(shù),當(dāng)x=1時(shí),fmin(x)=1+m,令m+1=0,得m=﹣1(舍).綜上所述,所求m為m=e(3)記?1(x)=x(x?a)2,?2(x)=?x2+(a?1)x+a,則據(jù)題意有h(ⅰ)h2(x)﹣1=0有2個(gè)不同的實(shí)根,只需滿足g(a?12)>1,∴a(ⅱ)h1(x)﹣1=0有3個(gè)不同的實(shí)根,因?1令?1'(x)=0,得x=a或1°當(dāng)a3>a即a<0時(shí),h1(x)在x=a處取得極大值,而h1(2°當(dāng)a3=a即3°當(dāng)a3<a即a>0時(shí),h1(x)在x=a3因?yàn)椋á。áⅲ┮瑫r(shí)滿足,故a>3下證:這5個(gè)實(shí)根兩兩不相等,即證:不存在x0使得h1(x0)﹣1=0和h2(x0)﹣1=0同時(shí)成立;若存在x0使得h1(x0)=h2(x0)=1,由h1(x0)=h2(x0),即x0得(x當(dāng)x0=a時(shí),f(x0)=g(x0)=0,不符合,舍去;當(dāng)x0≠a時(shí),有x02又由g(x0)=1,即?x0聯(lián)立①②式,可得a=0;而當(dāng)a=0時(shí),H(x)=(x3﹣1)(﹣x2﹣x﹣1)=0沒有5個(gè)不同的零點(diǎn),故舍去,所以這5個(gè)實(shí)根兩兩不相等.綜上,當(dāng)a>3322時(shí),函數(shù)y=26.已知函數(shù)f(x)=ln1(1)若f(x)是單調(diào)函數(shù),求a的取值范圍;(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,證明:f(x1)+f(x2)>3﹣2ln2.【解答】解:(Ⅰ)f(x)=﹣lnx﹣ax2+x,f′(x)=?1x?2ax令Δ=1﹣8a.當(dāng)a≥18時(shí),△≤0,f′(x)≤0,f(當(dāng)0<a<18時(shí),Δ>0,方程2ax2﹣x+1=0有兩個(gè)不相等的正根x1,x不妨設(shè)x1<x2,則當(dāng)x∈(0,x1)∪(x2,+∞)時(shí),f′(x)<0,當(dāng)x∈(x1,x2)時(shí),f′(x)>0,這時(shí)f(x)不是單調(diào)函數(shù).綜上,a的取值范圍是[18(Ⅱ)由(Ⅰ)知,當(dāng)且僅當(dāng)a∈(0,18)時(shí),f(x)有極小值點(diǎn)x1和極大值點(diǎn)x2且x1+x2=12a,x1x2f(x1)+f(x2)=﹣lnx1﹣ax12+x1﹣lnx2﹣a=﹣(lnx1+lnx2)?12(x1﹣1)?12(x2﹣1)+(x1=﹣ln(x1x2)+12(x1+x2)+1=ln(2a)令g(a)=ln(2a)+14a+1,a∈則當(dāng)a∈(0,18)時(shí),g′(a)=1a?14a所以g(a)>g(18)=3﹣2ln2,即f(x1)+f(x2)>3﹣2ln27.已知函數(shù)f(x)=?x3+x(Ⅰ)求實(shí)數(shù)b,c的值;(Ⅱ)求f(x)在區(qū)間[﹣1,2]上的最大值;(Ⅲ)對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?說明理由.【解答】解:(Ⅰ)當(dāng)x<1時(shí),f(x)=﹣x3+x2+bx+c,則f'(x)=﹣3x2+2x+b.依題意得:f(0)=0f'(?1)=?5,即c=0?3?2+b=?5解得b=(Ⅱ)由(Ⅰ)知,f(x)=①當(dāng)﹣1≤x<1時(shí),f'(x)=?3x令f'(x)=0得x=0或x=當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:x(﹣1,0)0(0,223(2f'(x)﹣0+0﹣f(x)單調(diào)遞減極小值單調(diào)遞增極大值單調(diào)遞減又f(﹣1)=2,f(23)=427,f②當(dāng)1≤x≤2時(shí),f(x)=alnx.當(dāng)a≤0時(shí),f(x)≤0,f(x)最大值為0;當(dāng)a>0時(shí),f(x)在[1,2]上單調(diào)遞增.∴f(x)在[1,2]最大值為aln2.綜上,當(dāng)aln2≤2時(shí),即a≤2ln2時(shí),f(當(dāng)aln2>2時(shí),即a>2ln2時(shí),f(x)在區(qū)間[﹣1,2]上的最大值為(Ⅲ)假設(shè)曲線y=f(x)上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在y軸兩側(cè).不妨設(shè)P(t,f(t))(t>0),則Q(﹣t,t3+t2),顯然t≠1∵△PO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新版試用期勞動(dòng)合同模板合同
- 土地承包合同法律文本示例
- 廠家設(shè)備租賃合同樣本集錦
- 項(xiàng)目合作人才服務(wù)合同
- 茶葉購銷合同模板
- 新產(chǎn)品開發(fā)項(xiàng)目合同協(xié)議書范本
- 保密合同-工作手機(jī)保管細(xì)則
- 度設(shè)備采購借款合同模板
- 倉儲(chǔ)用房租賃合同參考樣本
- 度醫(yī)療服務(wù)采購合同
- 2025年春季學(xué)期教導(dǎo)處工作計(jì)劃及安排表
- 2024年個(gè)人信用報(bào)告(個(gè)人簡版)樣本(帶水印-可編輯)
- 16J914-1 公用建筑衛(wèi)生間
- 2024年長沙幼兒師范高等??茖W(xué)校高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 電影院影務(wù)崗位工作流程
- 衛(wèi)生責(zé)任區(qū)域劃分表
- 《感染性腹瀉》PPT課件.ppt
- 計(jì)數(shù)的基本原理說課
- 高中學(xué)生秧田式課堂座位管理探究
- 初中花城版八年級(jí)下冊(cè)音樂6.軍港之夜(15張)ppt課件
- FTTH組網(wǎng)邏輯圖
評(píng)論
0/150
提交評(píng)論