點(diǎn)與圓的位置關(guān)系公開(kāi)課教學(xué)教案_第1頁(yè)
點(diǎn)與圓的位置關(guān)系公開(kāi)課教學(xué)教案_第2頁(yè)
點(diǎn)與圓的位置關(guān)系公開(kāi)課教學(xué)教案_第3頁(yè)
點(diǎn)與圓的位置關(guān)系公開(kāi)課教學(xué)教案_第4頁(yè)
點(diǎn)與圓的位置關(guān)系公開(kāi)課教學(xué)教案_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

24.2.1點(diǎn)和圓的位置關(guān)系教學(xué)設(shè)計(jì)一、設(shè)計(jì)理念本課從問(wèn)題情景:要學(xué)生解難入手,建立模型,設(shè)下懸念,然后讓學(xué)生探究?jī)蓚€(gè)問(wèn)題,將探究的結(jié)論應(yīng)用解決實(shí)際問(wèn)題。本課的一個(gè)關(guān)鍵點(diǎn)就是圍繞著學(xué)生活動(dòng)來(lái)展開(kāi),由學(xué)生身邊的事所引出的數(shù)學(xué)問(wèn)題使學(xué)生體會(huì)到數(shù)學(xué)與生活的緊密和諧的關(guān)系。樸素的問(wèn)題情景(套圈)對(duì)學(xué)生產(chǎn)生了一種情感上的親和力和感召力,增強(qiáng)了學(xué)生的自主參與性;通過(guò)觀察、操作、思考、解釋、合作等教學(xué)活動(dòng)過(guò)程,使學(xué)生體會(huì)到了創(chuàng)造的樂(lè)趣和成功的喜悅,對(duì)培養(yǎng)和發(fā)展學(xué)生的幾何思維能力也起到一定的幫助作用。2·1·c·n·j·y二、教學(xué)目標(biāo)知識(shí)與技能(1)知道并會(huì)用點(diǎn)和圓的三種位置關(guān)系及數(shù)量間的關(guān)系解決有關(guān)問(wèn)題。(2)通過(guò)探究過(guò)點(diǎn)畫(huà)圓的過(guò)程,掌握過(guò)不在同一直線上的三點(diǎn)畫(huà)圓的方法。權(quán)所有:21教育】過(guò)程與方法通過(guò)生活中實(shí)際例子,探求點(diǎn)和圓的三種位置關(guān)系,并提煉出相關(guān)的數(shù)學(xué)知識(shí),從而滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想。情感、態(tài)度與價(jià)值觀通過(guò)本節(jié)知識(shí)的學(xué)習(xí),體驗(yàn)點(diǎn)和圓的位置關(guān)系與生活中的射擊、投擲等活動(dòng)緊密相連,感知數(shù)學(xué)就在身邊,從而更加熱愛(ài)生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。育網(wǎng)版權(quán)所有三、教學(xué)重點(diǎn)難點(diǎn)重點(diǎn):(1)點(diǎn)和圓的三種位置關(guān)系,(2)過(guò)三點(diǎn)的圓。難點(diǎn):用數(shù)量關(guān)系判斷點(diǎn)和圓的位置關(guān)系教學(xué)突破:本節(jié)課始終以學(xué)生的探究發(fā)現(xiàn)、動(dòng)手操作、合作交流為主線,通過(guò)層層設(shè)問(wèn),適時(shí)指導(dǎo),引導(dǎo)學(xué)生去探究點(diǎn)和圓的三種位置關(guān)系和過(guò)三點(diǎn)的圓。21教育名師原創(chuàng)作品四、教學(xué)過(guò)程設(shè)計(jì)活動(dòng)一:探究點(diǎn)和圓的位置關(guān)系問(wèn)題1、大家都參與過(guò)或看過(guò)這樣一個(gè)游戲——套圈,如果我們班同學(xué)都公平的加入到這個(gè)游戲中來(lái),我們應(yīng)站成一個(gè)什么圖形?師生活動(dòng):教師創(chuàng)設(shè)問(wèn)題情境,提出問(wèn)題學(xué)生思考,教師進(jìn)而提出解決這個(gè)問(wèn)題要研究點(diǎn)和圓的位置關(guān)系.設(shè)計(jì)意圖:,由學(xué)生身邊的事所引出的數(shù)學(xué)問(wèn)題使學(xué)生體會(huì)到數(shù)學(xué)與生活的緊密和諧的關(guān)系。樸素的問(wèn)題情景(套圈)對(duì)學(xué)生產(chǎn)生了一種情感上的親和力和感召力,增強(qiáng)了學(xué)生自主參與性。師生活動(dòng):圓形。教師追問(wèn)1:為什么圍成圓形游戲就公平?師生活動(dòng):學(xué)生思考后得到,圓上各點(diǎn)到圓心的距離都相等,如果用符號(hào),設(shè)圓的半徑為r,點(diǎn)到圓心的距離為d,那么就由點(diǎn)和圓的位置關(guān)系得到d與r的數(shù)量關(guān)系,即:點(diǎn)在圓上d=rwww-2-1-cnjy-com設(shè)計(jì)意圖:通過(guò)問(wèn)題,既復(fù)習(xí)了圓的定義,又為本節(jié)課學(xué)習(xí)點(diǎn)和圓的位置關(guān)系作好鋪墊。問(wèn)題2、甲、乙兩人分別站在圖中⊙O的A、B兩點(diǎn)處,他們正準(zhǔn)備參加游戲,丙、丁兩人也趕來(lái)參加,分別站在圖中的P、Q兩點(diǎn)處,如果你是甲同學(xué),你會(huì)有什么看法?QQAOBP師生活動(dòng):學(xué)生小組討論后得到,這樣游戲不公平。丙到圓心的距離大于半徑,丁到圓心的距離小于半徑,對(duì)丁來(lái)說(shuō),他占優(yōu)勢(shì)。進(jìn)而得到圓的內(nèi)部的點(diǎn)到圓心的距離小于半徑。即:點(diǎn)在圓內(nèi)d<r;點(diǎn)在圓外d>r設(shè)計(jì)意圖:讓學(xué)生通過(guò)游戲的方式感受由點(diǎn)和圓的位置關(guān)系得到d與r的數(shù)量關(guān)系,加深學(xué)生對(duì)所學(xué)內(nèi)容的理解。問(wèn)題3、后來(lái)小明也來(lái)參加游戲,他站在圖中所示的M點(diǎn),但是地上的線已經(jīng)模糊了,問(wèn)小明怎樣才能知道自己恰好站在圓上呢?全班同學(xué)認(rèn)真傾聽(tīng)、發(fā)現(xiàn)亮點(diǎn)、找出不足并予以糾正設(shè)計(jì)意圖:學(xué)生能通過(guò)自己動(dòng)手畫(huà)圖更深刻地感受經(jīng)過(guò)平面上兩點(diǎn)的圓有無(wú)數(shù)個(gè),它們的圓心在線段AB的垂直平分線上。問(wèn)題6:經(jīng)過(guò)三點(diǎn)做一個(gè)圓,如何確定這個(gè)圓的圓心?L2L1OCBA師生活動(dòng):在小組討論過(guò)程中,深入到小組中去,了解情況,如果有需要,應(yīng)給予點(diǎn)撥、指導(dǎo),并將發(fā)現(xiàn)的問(wèn)題記在心中。學(xué)生經(jīng)過(guò)思考會(huì)得到:三點(diǎn)A、B、C不在同一條直線上,因?yàn)樗蟮膱A要經(jīng)過(guò)A、B、C三點(diǎn),所以圓心到這三點(diǎn)的距離相等,因此這個(gè)點(diǎn)要在線段AB的垂直的平分線上,又要在線段L2L1OCBA=1\*GB3①分別連接AB、BC、AC;=2\*GB3②分別作出線段AB的垂直平分線l1和l2,設(shè)他們的交點(diǎn)為O,則OA=OB=OC;=3\*GB3③以點(diǎn)O為圓心,OA(或OB、OC)為半徑作圓,便可以作出經(jīng)過(guò)A、B、C的圓.由于過(guò)A、B、C三點(diǎn)的圓的圓心只能是點(diǎn)O,半徑等于OA,所以這樣的圓只能有一個(gè)。教師追問(wèn)1:是不是過(guò)任意三點(diǎn)都能畫(huà)一個(gè)圓?結(jié)論:不在同一條直線上的三點(diǎn)確定一個(gè)圓.AcBp教師追問(wèn)2AcBp設(shè)計(jì)意圖:通過(guò)三種情況的探究,發(fā)現(xiàn)只有當(dāng)三個(gè)點(diǎn)不在同一直線上時(shí),才可以確定一個(gè)圓,讓學(xué)生親身經(jīng)歷數(shù)學(xué)的探究過(guò)程。21教育網(wǎng)活動(dòng)三:三角形的外接圓和外心經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)可以做一個(gè)圓,這個(gè)圓叫做三角形的外接圓,外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做這個(gè)三角形的外心.這個(gè)三角形叫做這個(gè)圓的內(nèi)接三角形。三角形的外心就是三角形三條邊的垂直平分線的交點(diǎn),它到三角形三個(gè)頂點(diǎn)的距離相等。21設(shè)計(jì)意圖:結(jié)合具體圖形加深學(xué)生對(duì)三角形的外接圓和外心的認(rèn)識(shí)?!緛?lái)源:21·世紀(jì)·教活動(dòng)四:目標(biāo)檢測(cè)設(shè)計(jì):1.判斷下列說(shuō)法是否正確(1)任意的一個(gè)三角形一定有一個(gè)外接圓()(2)任意一個(gè)圓有且只有一個(gè)內(nèi)接三角形()(3)經(jīng)過(guò)三點(diǎn)一定可以確定一個(gè)圓()(4)三角形的外心到三角形各頂點(diǎn)的距離相等()設(shè)計(jì)意圖:考察學(xué)生對(duì)三角形外心的理解和掌握。2.若一個(gè)三角形的外心在一邊上,則此三角形的形狀為()A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形設(shè)計(jì)意圖:考察學(xué)生對(duì)三角形外心的位置的理解和掌握。3.正方形ABCD的邊長(zhǎng)為2cm,以A為圓心2cm為半徑作⊙A,則點(diǎn)B在⊙A_____;點(diǎn)C在⊙A____;點(diǎn)D在⊙A_____21·世紀(jì)*教育網(wǎng)設(shè)計(jì)意圖:考察學(xué)生對(duì)點(diǎn)和圓的位置關(guān)系的理解和掌握。4.已知AB為⊙O的直徑,P為⊙O上任意一點(diǎn),則點(diǎn)P關(guān)于AB的對(duì)稱點(diǎn)P′與⊙O的位置為()2-1-c-n-j-yA.在⊙O內(nèi)B.在⊙O外C.在⊙O上D.不能確定設(shè)計(jì)意圖:考察學(xué)生對(duì)點(diǎn)和圓的位置關(guān)系的理解和掌握。5.已知⊙O的面積為9π,判斷點(diǎn)P與⊙O的位置關(guān)系.(1)若PO=4.5,則點(diǎn)P在_____;(2)若PO=2,則點(diǎn)P在_____;(3)若PO=_____,則點(diǎn)P在圓上.設(shè)計(jì)意圖:考察學(xué)生對(duì)點(diǎn)和圓的位置關(guān)系的理解和掌握。6.爆破時(shí),導(dǎo)火索燃燒的速度是每秒0.9cm,點(diǎn)導(dǎo)火索的人需要跑到離爆破點(diǎn)120m以外的的安全區(qū)域,已知這個(gè)導(dǎo)火索的長(zhǎng)度為18cm,如果點(diǎn)導(dǎo)火索的人以每秒6.5m的速度撤離,那么是否安全?為什么?設(shè)計(jì)意圖:綜合考察學(xué)生利用點(diǎn)和圓的位置關(guān)系解決實(shí)際問(wèn)題的能力。活動(dòng)五:反思小結(jié)作業(yè)布置通過(guò)本節(jié)課的學(xué)習(xí),你有哪些收獲?有何感想?作業(yè):課本101頁(yè)第1、7題設(shè)計(jì)意圖:通過(guò)小結(jié)使學(xué)生歸納、梳理總結(jié)本節(jié)的知識(shí)、技能、方法,將本節(jié)所學(xué)與以前所學(xué)的知識(shí)進(jìn)行緊密聯(lián)系,有利于學(xué)生認(rèn)識(shí)數(shù)學(xué)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論