




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
PaperlTS2015ProbabilisticModelsforSensorSimulationsfinal.pdf 智能交通世界大會ITS智慧城市社區(qū)人工智能AI物聯(lián)網(wǎng)IT報告課件教案22ndITSWorldCongress,Bordeaux,France,59October2019PapernumberITS-2627Probabilistic SensorSimulationsforValidatingDataFusionSystemsRobinSchubert1*,NormanMattern1,RobinvanderMade21.BASELABSGmbH,Ebertstr.10,09126Chemnitz,Germany,robin.schubert@baselabs.de2.TASSInternational,TheNetherlands AbstractWiththeincreasingdeploymentofadvaneeddriverassistaneesystemsandtheongoingdevelopmentofvehicleautomation,efficientwaysofvalidating suchsystemsarebecomingacrucialpartofthedevel-opmentprocess.Inparticular,simulationsareanincreasingly important addition tofieldtrialsastheyfacilitateanearlyandautomatedevaluation.Inthispaper,aprobabilisticmethodologyforsimulatingsensordatainthecontextofadvaneeddriverassistaneesystemsandautomatedvehiclesispresented.Theobjectiveofthisapproachistoincreasethesimulationslevelofrealismwhilemaintainingbothflexibilityandadaptabilityof simulation-basedvalidation strategies.Theproposedprobabilistic sensormodelsarecomparedtorealradardatainordertoevaluatethestatisticalcharacteristicsofbothdatasets.Withthepresentedapproach,itwillbepossibletoincreasethequalityoftheinitialevaluationresultsbasedonsimulateddata.Keywords: Sensorsimulation, MonteCarlo,ProbabilisticfilteringIntroductionInordertofurtherincreaseroadsafety andtrafficefficiency,advaneeddriver assistaneesystemsarecurrently beingwidelydeployed.Inaddition,different stakeholdersarecurrently investigating howanincreasinglevelofvehicleautomationcancontributetotheseobjectives[1].Asthesesystemsaredi-rectly intervening intothedriving process,theirdesignandimplementationishighlysafety-critical.Appropriateevaluationmethodologiesareacrucialpartofanydevelopmentprocessforsuchsystems.Duetothehighcomplexityoftrafficscenarios,fieldtrialsrequireatremendouseffort including driving millions ofkilometres.Thus,evaluationmethodologiesbasedonsimulationareincreasinglyappliedProbabilisticSensorSimulationsforValidatingDataFusionSystems2inparticular,fortheearlyphasesofevaluation.Themainbenefitsofsimulationsinclude thepossibilitytoautomatetests,toconductevaluationseveniftheplatform(e.g.sensors)arenotyetavailableandtoassesssafety-criticalsituations.Ontheotherhand,thesignificaneeofsimulation-basedevaluationsstronglydependsonthequalityofthesimulations,thatis,ontheprobabilitythatrealandsimulatedtrafficseenarioswouldtriggerasimilarbehaviourofthesystemundertest.Currently,twomainapproachesofsimulatingsensordataarebeingused:Groundtruthsensormodels:Thesemodelsdeliverthetrue,undisturbedsimulatedvaluesofthesimulatedquantities(e.g.,thepositionandvelocityofvehiclesorthecurvatureofaIane).Thenotionbehindthiskindofmodelsisthatasystemwhichfailsonidealizeddatawillcertainlynotfulfilitsrequirementsinrealisticscenarios.Physics-basedsensormodels:Thesemodelsattempttocovertheinternalbehaviourofthesensorandthephysicalmeasurementprinciple.Asanexample,manysimulationenvironmentsproviderenderedcameraimagesthataccount,amongothers,forlightingandweatherconditions. Similarly,physicalradarsensorsexistthatcalculatethepropagationofelectromagneticwavesinthetrafficsceneandthedetectioncharacteristics(e.g.,theantennapatterns) orthesensor.Whileeachoftheseapproachesisjustifiedforcertainusecases,bothlevelsofmodelling haveparticulardrawbacks.Thedisadvantageofgroundtruthmodelsisratherobvious,astheycompletelyneglect sen-sordisturbanceswhichdeterioratesthesignificanee oftheevaluationresultsobtainedwithsuchmodels.Thoughphysicalmodelsappeartoovercomethislimitationbymaximizingtherealismofthesimulateddata,theirdrawbacksareratheraveryhighcomputationalcomplexityandevenmore importantaratherlimitedpossibilitytoadaptthesimulationtodifferent sensortypes.Infact,exchanging,e.g.,aDopplerradarbyafrequencymodulatedcontinuouswave(FMCW)radarimpliestodevelopacom-pletelynewphysicalsensormodel.Table1ComparisonofdifferentabstractionlayersofsensormodelsforsimulationCriteriaGroundTruthModelsPhysicalModelsProbabilisticModelsErrorCharacteristicsidealizedrealisticrealisticstatisticsComputationalComplexitylowveryhighLowAdaptabilitytospecific sensorsn/averyhighlowProbabilisticSensorSimulationsforValidatingDataFusionSystems3Figure1GeneralstructureoftheprobabilisticsensormodelapproachInthispaper,anintermediateabstractionlayerforsensorsimulations ispresentedwhichintegrates sen-sordisturbancesprobabilistically.Thus,theobjectiveistherepresenttheerrorstatisticsofrealsensordataratherthanthedatathemselves.Table1givesacomparisonofthisapproachandthetwoclassicalmodellinglayers.Thepaperdescribesthetechnicalapproachandpresentsfirstresultsthathavebeenobtainedbycomparingprobabilisticallysimulateddatatorealdatainatypicaltraffic scene. Technical approachandchallengesThe generalideaofthepresentedapproachthatisillustratedinfigure1appearsratherstraightforward:Theidealizedsensordatageneratedfromagroundtruthsensormodelaresuperimposedbyanerrorsignalusingarandomgenerator.Inpractice,thiscanbedoneusingaMonteCarloapproach(forinstanee, rejection sampling[2]).Thisapproachcanbeappliedtodifferenttypesofsensorerrors,includingSensornoiseforeachmeasuredguanLily,l?alsenegativedetectionSjl;alsepositivedetecLions,Timingenvors(deterministic/probabilistic sensorlatencies)Themajorchallengeistoselectanappropriateprobabilisticdensityfunction(PDF)tosamplefrom.ThisPDFneedstorepresenttherealcharacteristicsofthesensorwhilestillfacilitatingadaptability.Thisadaptabilityshallnotonlycoverdifferent
sensors,butalsodifferent environments,weatherconditions,etc.Thistrade-offisachievedbydefiningaparticulartypeofPDFforeacherrortype(e.g.aPoissondistributionfordetectionerrororaRayleigh distribution forradardetections).However,theparametersofthesePDFs(e.g.,theclutterdensityforaPoissondistribution)canstillbesetaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromaccordingtothesensortoberepresentedorthecurrentscenario.IdealizedSensorDatafromSimulationProbabilisticSensorModelsSimulationSimulationProbabilisticSensorModelsSimulationEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforEnvironmentSensor DatawithrealisticerrorcharacteristicsProbabilisticSensor SimulationsforValidating DataFusionSystems4CaseStudyInordertocomparetheprobabilisticallysimulatedsensordatawithrealdata,thefollowingevaluationmethodologyhasbeenapplied:DatafromvarioussensorshavebeenrecordedusingthedatahandlingframeworkBASELABSConnect[3].Thedataincludescameraimagesanddetectionsofa77GHzFMCWradar,Fromtherecordeddata,asimulationsscenariohasbeenderivedusingthesimulationsoftwarePresScan[4].Vehiclesinfrontoftheegovehiclehavebeensimulatedusingagroundtruthpositionandvelocitysensor(cp.figures2).Figure2Comparisonofrealandsimulatedtraffic scenariousedfortheevaluation. Figure3:IdealizedandmodifiedradarmeasurementsProbabilisticSensorSimulationsforValidatingDatafusionSystems5Usingtheapproachpresentedinthispaper,sensornoisehasbeenaddedtotherange,rangerate,andazimuthmeasurementsoftheradargroundtruthdata.Inaddition, detectionerrorsincludingfalsenegativesandfalseposiLives(c1ntter)hriveheenridded. Th^已mncharacteristicsoftheprobabilisticsensormodelshavebeencomparedtothestatisticsoftherealsradardata(includingthedetectionperformaneeandthemeasurementaccuracy)asshowninfigure3.Thecomparisonshowsthatthesimulateddisturbeddatarepresentsthesta-tisticalcharacteristicsofthetruedatareasonablywellwhichdoesnotappearsurprising,astheparametersoftherandomgeneratorhavebeenderivedfromtheseverymeasurementsbefore.Thisexemplaryevaluationshowsthatitiscomparablyeasytogenerate simulateddisturbedsensordataifthestatisticalpropertiesofthesensorundertestarewellknown.ResultsIn additiontothequalitativeevaluationdescribedintheprevioussection,aquantitativevalidationhas beenconducted.Theobjectivewastoensurethatthestatisticalpropertiesthataresupposedtobemod-elledcanbeindeedfoundinthesimulatedsensordata.Inthefollowing,theresultsforthedetectionerrorsarepresented:Forfalsenegatives,theuseroftheprobabilisticsensormodelmaydefinethedetection probabilityofthesimulatedsensor.Fromallsimulateddetections,asubsetischosesprobabilisticallythatissimulatedasnotdetectedand,thus,isnotdeliveredtotheoutputofthesimulationmodel.Infigure4,thecumulatedratiobetweenthedetectedobjectsandtheexistingobjectsisillustrated.Forthisexperiment,aparameterof=0.7hasbeenused.Itcanbeobservedthatwhileatthebeginningofthesimulation,theresultingratioisratherdynamic,itisconvergingagainst70%duringthesimula-tion.Thevalidationofthefalsepositivedetectionsrequiresabitmoreofexplanation:Themainparameterofthesimulationforthiseffectisthenumberoffalsepositivedetectionswithinthefieldofview.Thisparameterisnotprobabilisticonthecontrary,itisadeterministicvalue(whichmeansthatifthevalueissetto2,exactly2falsepositivedetectionsaresimulatedateachtimestep.However,thepositionsofthefalsepositive detectionsarechosenprobabilistically.ConsidertheexampleofanACCshowninfigure5:Theegovehicleisadjustingitsspeedaccordingtothedistaneeandthevelocityofthetargetvehicleinfrontofhim.Afalsepositivedeteetionontheneighbourlaneandinfrontofthetargetvehiclewillnotchangethebehaviourofthesystem.However,afalsepositivedetectionbetweentheegoandthehostvehiclewillhaveaneffect.Thus,theareaoftheegolanebetweenbothvehiclescanbeconsideredanareaofinterest fortheACCwithrespecttofalsepositivedetections.ProbabilisticSensorSimulationsforValidatingDataFusionSystems6Thequestionishowmanyfalsepositivedetectionswilloccurwithinthisareaofinterest.DatafusionsystemstypicallyassumethatthenumberoffalsepositivedetectionsisfollowingaPoissondistribution, whosedensitycanbecalculatedbymultiplyingthenumberoffalsepositivedetectionswiththeratiobetweentheareaofinterestandtheareaofthefieldofview.Figure6showsboththetheoreticalPoissondistributionforthegivenscenarioaswellastheempiricalvalues.Itcanbeseenthatthesimulationfitswelltothetheoreticalassumptions.Thevalidation showsthatthesimulatedmeasurementsbehaveaccordingtotheassumptionstypicaldatafusionsystemshave(thatis,Gaussiannoise,adefineddetectionprobabilityandafalsepositivedensitythatfollowsaPoissondistribution).Thus,thesimulationcanbeconvenientlyusedtotestandvalidatedatafusionsystemsanddeterminetheirbehaviourunderthecondition thattheirassumptionshold.Fu-tureworkwillalsoincludethesimulationofeffectsthatviolatessuchassumptions. ProbabilisticSensorSimulations forValidating DataFusionSystems7Figure4:Simulatedfalsenegativedetections.Inthetopdiagram,thetimestepsfrom0to500are
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共汽車能源消耗定額運算示例
- 瓜蔞綠色高效栽培技術
- 2025浙江聯(lián)盟乳房旋切針類醫(yī)用耗材集中帶量采購中選產(chǎn)品中選產(chǎn)品清單及協(xié)議量明細
- 保養(yǎng)鞋子知識培訓課件
- 植物病害的防治與研究試題及答案
- 保潔防控培訓課件內(nèi)容
- (一模)2025年廣東省高三高考模擬測試 (一) 英語試卷(含官方答案及詳解)
- 如何提升國際物流職業(yè)素養(yǎng)的試題及答案
- 針對性備考CPSM試題及答案分享
- 精準分析CPSM考試試題及答案
- 【科教版】五年級下冊課件【【科教版】六年級下冊2-5《相貌各異的我們》】
- 浙江省2018版計價依據(jù)建筑面積計算規(guī)則解讀變化
- 頸椎骨折伴脊髓損傷護理查房
- 工業(yè)建筑設計統(tǒng)一標準2023年
- 2023年安徽職業(yè)技術學院單招職業(yè)適應性測試題庫及答案解析
- 廣州國際創(chuàng)新城南岸起步區(qū)控制性詳細規(guī)劃
- 新BOOK3-Unit-4-Imagination-and-Creativity想象力和創(chuàng)造力
- 新教科版五下科學2-2《用浮的材料造船》課件
- FZ/T 25001-1992工業(yè)用毛氈
- 2023年鄭州鐵路職業(yè)技術學院單招職業(yè)技能考試筆試題庫及答案解析
- 工程開工令模板
評論
0/150
提交評論