版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
變壓器1)介紹
要從遠(yuǎn)端發(fā)電廠送出電能,必須應(yīng)用高壓輸電。因?yàn)樽罱K的負(fù)荷,在一些點(diǎn)高電壓必須降低。變壓器能使電力系統(tǒng)各個(gè)部分運(yùn)行在電壓不同的等級。本文我們討論的原則和電力變壓器的應(yīng)用。
2)雙繞組變壓器
變壓器的最簡單形式包括兩個(gè)磁通相互耦合的固定線圈。兩個(gè)線圈之所以相互耦合,是因?yàn)樗鼈冞B接著共同的磁通。
在電力應(yīng)用中,使用層式鐵芯變壓器(本文中提到的)。變壓器是高效率的,因?yàn)樗鼪]有旋轉(zhuǎn)損失,因此在電壓等級轉(zhuǎn)換的過程中,能量損失比較少。典型的效率范圍在92到99%,上限值適用于大功率變壓器。
從交流電源流入電流的一側(cè)被稱為變壓器的一次側(cè)繞組或者是原邊。它在鐵圈中建立了磁通φ,它的幅值和方向都會發(fā)生周期性的變化。磁通連接的第二個(gè)繞組被稱為變壓器的二次側(cè)繞組或者是副邊。磁通是變化的;因此依據(jù)楞次定律,電磁感應(yīng)在二次側(cè)產(chǎn)生了電壓。變壓器在原邊接收電能的同時(shí)也在向副邊所帶的負(fù)荷輸送電能。這就是變壓器的作用。
3)變壓器的工作原理
當(dāng)二次側(cè)電路開路是,即使原邊被施以正弦電壓Vp,也是沒有能量轉(zhuǎn)移的。外加電壓在一次側(cè)繞組中產(chǎn)生一個(gè)小電流Iθ。這個(gè)空載電流有兩項(xiàng)功能為在鐵芯中產(chǎn)生電磁通,該磁通在零和φm之間做正弦變化,φm是φm鐵芯磁通的最大值;它的一個(gè)分量說明了鐵芯中的渦流和磁滯損耗。這兩種相關(guān)的損耗被稱為鐵芯損耗。
變壓器空載電流Iθ一般大約只有滿載電流的2%—5%。因?yàn)樵诳蛰d時(shí),原邊繞組中的鐵芯相當(dāng)于一個(gè)很大的電抗,空載電流的相位大約將滯后于原邊電壓相位90o。顯然可見電流分量Im=I0sinθ0,被稱做勵(lì)磁電流,它在相位上滯后于原邊電壓VP90o。就是這個(gè)分量在鐵芯中建立了磁通;因此磁通φ與Im同相。
第二個(gè)分量Ie=I0sinθ0,與原邊電壓同相。這個(gè)電流分量向鐵芯提供用于損耗的電流。兩個(gè)相量的分量和代表空載電流,即應(yīng)注意的是空載電流是畸變和非正弦形的。這種情況是非線性鐵芯材料造成的。
如果假定變壓器中沒有其他的電能損耗一次側(cè)的感應(yīng)電動(dòng)勢Ep和二次側(cè)的感應(yīng)電壓Es可以表示出來。因?yàn)橐淮蝹?cè)繞組中的磁通會通過二次繞組,依據(jù)法拉第電磁感應(yīng)定律,二次側(cè)繞組中將產(chǎn)生一個(gè)電動(dòng)勢E,即E=NΔφ/Δt。相同的磁通會通過原邊自身,產(chǎn)生一個(gè)電動(dòng)勢Ep。正如前文中討論到的,所產(chǎn)生的電壓必定滯后于磁通90o,因此,它于施加的電壓有180o的相位差。因?yàn)闆]有電流流過二次側(cè)繞組,Es=Vs。一次側(cè)空載電流很小,僅為滿載電流的百分之幾。因此原邊電壓很小,并且Vp的值近乎等于Ep。原邊的電壓和它產(chǎn)生的磁通波形是正弦形的;因此產(chǎn)生電動(dòng)勢Ep和Es的值是做正弦變化的。產(chǎn)生電壓的平均值如下:即是法拉第定律在瞬時(shí)時(shí)間里的應(yīng)用,它遵循:其中N是指線圈的匝數(shù),從交流電原理可知,有效值是一個(gè)正弦波,其值為平均電壓的1.11倍,因此因?yàn)橐淮蝹?cè)繞組和二次側(cè)繞組的磁通相等,所以繞組中每匝的電壓也相同。因此并且其中Np和Es是一次側(cè)繞組和二次側(cè)繞組的匝數(shù)。一次側(cè)和二次側(cè)電壓增長的比率稱做變比。用字母a來表示這個(gè)比率,如下式
假設(shè)變壓器輸出電能等于其輸入電能——這個(gè)假設(shè)適用于高效率的變壓器。實(shí)際上我們是考慮一臺理想狀態(tài)下的變壓器;這意味著它沒有任何損耗。因此或者這里PF代表功率因素。在上面公式中一次側(cè)和二次側(cè)的功率因素是相等的;因此從上式我們可以得知它表明端電壓比等于匝數(shù)比,換句話說,一次側(cè)和二次側(cè)電流比與匝數(shù)比成反比。匝數(shù)比可以衡量二次側(cè)電壓相對于一次惻電壓是升高或者是降低。為了計(jì)算電壓,我們需要更多數(shù)據(jù)。
終端電壓的比率變化有些根據(jù)負(fù)載和它的功率因素。實(shí)際上,變比從標(biāo)識牌數(shù)據(jù)獲得,列出在滿載情況下原邊和副邊電壓。
當(dāng)副邊電壓Vs相對于原邊電壓減小時(shí),這個(gè)變壓器就叫做降壓變壓器。如果這個(gè)電壓是升高的,它就是一個(gè)升壓變壓器。在一個(gè)降壓變壓器中傳輸變比a遠(yuǎn)大于1(a>1.0),同樣的,一個(gè)升壓變壓器的變比小于1(a<1.0)。當(dāng)a=1時(shí),變壓器的二次側(cè)電壓就等于起一次側(cè)電壓。這是一種特殊類型的變壓器,可被應(yīng)用于當(dāng)一次側(cè)和二次側(cè)需要相互絕緣以維持相同的電壓等級的狀況下。因此,我們把這種類型的變壓器稱為絕緣型變壓器。
顯然,鐵芯中的電磁通形成了連接原邊和副邊的回路。在第四部分我們會了解到當(dāng)變壓器帶負(fù)荷運(yùn)行時(shí)一次側(cè)繞組電流是如何隨著二次側(cè)負(fù)荷電流變化而變化的。
從電源側(cè)來看變壓器,其阻抗可認(rèn)為等于Vp
/
Ip。從等式中我們可知Vp
=
aVs并且Ip
=
Is/a。根據(jù)Vs和Is,可得Vp和Ip的比例是但是Vs
/
Is
負(fù)荷阻抗ZL,因此我們可以這樣表示這個(gè)等式表明二次側(cè)連接的阻抗折算到電源側(cè),其值為原來的a2倍。我們把這種折算方式稱為負(fù)載阻抗向一次側(cè)的折算。這個(gè)公式應(yīng)用于變壓器的阻抗匹配。
4.有載情況下的變壓器
一次側(cè)電壓和二次側(cè)電壓有著相同的極性,一般習(xí)慣上用點(diǎn)記號表示。如果點(diǎn)號同在線圈的上端,就意味著它們的極性相同。因此當(dāng)二次側(cè)連接著一個(gè)負(fù)載時(shí),在瞬間就有一個(gè)負(fù)荷電流沿著這個(gè)方向產(chǎn)生。換句話說,極性的標(biāo)注可以表明當(dāng)電流流過兩側(cè)的線圈時(shí),線圈中的磁動(dòng)勢會增加。
因?yàn)槎蝹?cè)電壓的大小取決于鐵芯磁通大小φ0,所以很顯然當(dāng)正常情況下負(fù)載電勢Es沒有變化時(shí),二次電壓也不會有明顯的變化。當(dāng)變壓器帶負(fù)荷運(yùn)行時(shí),將有電流Is流過二次側(cè),因?yàn)镋s產(chǎn)生的感應(yīng)電動(dòng)勢相當(dāng)于一個(gè)電壓源。二次側(cè)電流產(chǎn)生的磁動(dòng)勢NsIs會產(chǎn)生一個(gè)勵(lì)磁。這個(gè)磁通的方向在任何一個(gè)時(shí)刻都和主磁通反向。當(dāng)然,這是楞次定律的體現(xiàn)。因此,NsIs所產(chǎn)生的磁動(dòng)勢會使主磁通φ0減小。這意味著一次側(cè)線圈中的磁通減少,因而它的電壓Ep將會增大。感應(yīng)電壓的減小將使外施電壓和感應(yīng)電動(dòng)勢之間的差值更大,它將使初級線圈中流過更大的電流。初級線圈中的電流Ip的增大,意味著前面所說明的兩個(gè)條件都滿足:1)輸出功率將隨著輸出功率的增加而增加2)初級線圈中的磁動(dòng)勢將增加,以此來抵消二次側(cè)中的磁動(dòng)勢減小磁通的趨勢。
總的來說,變壓器為了保持磁通是常數(shù),對磁通變化的響應(yīng)是瞬時(shí)的。更重要的是,在空載和滿載時(shí),主磁通φ0的降落是很少的(一般在)1至3%。其需要的條件是E降落很多來使電流Ip增加。
在一次側(cè),電流Ip’在一次側(cè)流過以平衡Is產(chǎn)生的影響。它的磁動(dòng)勢NpIp’只停留在一次側(cè)。因?yàn)殍F芯的磁通φ0保持不變,變壓器空載時(shí)空載電流I0必定會為其提供能量,故一次側(cè)電流Ip是電流Ip’與I0’的和。
因?yàn)榭蛰d電流相對較小,那么一次側(cè)的安匝數(shù)與二次側(cè)的安匝數(shù)相等的假設(shè)是成立的。因?yàn)樵谶@種狀況下鐵芯的磁通是恒定的。因此我們?nèi)耘f可以認(rèn)定空載電流I0相對于滿載電流是極其小的。
當(dāng)一個(gè)電流流過二次側(cè)繞組,它的磁動(dòng)勢(NsIs)將產(chǎn)生一個(gè)磁通,于空載電流I0產(chǎn)生的磁通φ0不同,它只停留在二次側(cè)繞組中,因?yàn)檫@個(gè)磁通不流過一次側(cè)繞組,所以它不是一個(gè)公共磁通。
另外,流過一次側(cè)繞組的負(fù)載電流只在一次側(cè)繞組中產(chǎn)生磁通,這個(gè)磁通被稱為一次側(cè)的漏磁。二次側(cè)漏磁將使電壓增大以保持兩側(cè)電壓的平衡。一次側(cè)漏磁也一樣。因此,這兩個(gè)增大的電壓具有電壓降的性質(zhì),總稱為漏電抗電壓降。另外,兩側(cè)繞組同樣具有阻抗,這也將產(chǎn)生一個(gè)電阻壓降。把這些附加的電壓降也考慮在內(nèi),這樣一個(gè)實(shí)際的變壓器的等值電路圖就完成了。由于分支勵(lì)磁體現(xiàn)在電流里,為了分析我們可以將它忽略。這就符我們前面計(jì)算中可以忽略空載電流的假設(shè)。這證明了它對我們分析變壓器時(shí)所產(chǎn)生的影響微乎其微。因?yàn)殡妷航蹬c負(fù)載電流成比例關(guān)系,這就意味著空載情況下一次側(cè)和二次側(cè)繞組的電壓降都為零。TRANSFORMER1)INTRODUCTIONThe
high-voltage
transmission
was
need
for
the
case
electrical
power
is
to
be
provided
at
considerable
distance
from
a
generating
station.
At
some
point
this
high
voltage
must
be
reduced,
because
ultimately
is
must
supply
a
load.
The
transformer
makes
it
possible
for
various
parts
of
a
power
system
to
operate
at
different
voltage
levels.
In
this
paper
we
discuss
power
transformer
principles
and
applications.2)TOW-WINDING
TRANSFORMERSA
transformer
in
its
simplest
form
consists
of
two
stationary
coils
coupled
by
a
mutual
magnetic
flux.
The
coils
are
said
to
be
mutually
coupled
because
they
link
acommon
flux.In
power
applications,
laminated
steel
core
transformers
(to
which
this
paper
is
restrictedare
used.
Transformers
are
efficient
because
the
rotational
losses
normally
associated
with
rotating
machine
are
absent,
so
relatively
little
power
is
lost
when
transforming
power
from
one
voltage
level
to
another.
Typical
efficiencies
are
in
the
range
92
to
99%,
the
higher
values
applying
to
the
larger
power
transformers.The
current
flowing
in
the
coil
connected
to
the
ac
source
is
called
the
primary
winding
or
simply
the
primary.
It
sets
up
the
flux
φ
in
the
core,
which
varies
periodically
both
in
magnitudeand
direction.
The
flux
links
the
second
coil,
called
the
secondary
winding
or
simply
secondary.The
flux
is
changing;
therefore,
it
induces
a
voltage
in
the
secondary
by
electromagnetic
induction
in
accordance
with
Lenz’s
law.
Thus
the
primary
receives
its
power
from
the
source
while
the
secondary
supplies
this
power
to
the
load.
This
action
is
known
as
transformer
action.3)TRANSFORMER
PRINCIPLESWhen
a
sinusoidal
voltage
Vp
is
applied
to
the
primary
with
the
secondary
open-circuited,
there
will
be
no
energy
transfer.
The
impressed
voltage
causes
a
small
current
Iθ
to
flow
in
the
primary
winding.
This
no-load
current
has
two
functions:
(1)
it
produces
the
magnetic
flux
in
the
core,
which
varies
sinusoidally
between
zero
and
φm,
where
φm
is
the
maximum
value
of
the
core
flux;
and
(2)
it
provides
a
component
to
account
for
the
hysteresis
and
eddy
current
losses
in
the
core.
There
combined
losses
arenormally
referred
to
as
the
core
losses.The
no-load
current
Iθ
is
usually
few
percent
of
the
rated
full-load
current
of
the
transformer
(about
2
to
5%).
Since
at
no-load
the
primary
winding
acts
as
a
large
reactance
due
to
the
iron
core,
the
no-load
current
will
lag
the
primary
voltage
by
nearly
90o.
It
is
readily
seen
that
the
current
component
Im=
I0sinθ0,
called
the
magnetizing
current,
is
90o
in
phase
behind
the
primary
voltage
VP.
It
is
this
component
that
sets
up
the
flux
in
the
core;
φ
is
therefore
in
phase
with
Im.The
second
component,
Ie=I0sinθ0,
is
in
phase
with
the
primary
voltage.
It
is
the
current
component
that
supplies
the
core
losses.
The
phasor
sum
of
these
two
components
represents
the
no-load
current,
orIt
should
be
noted
that
the
no-load
current
is
distortes
and
nonsinusoidal.
This
is
the
result
of
the
nonlinear
behavior
of
the
core
material.If
it
is
assumed
that
there
are
no
other
losses
in
the
transformer,
the
induced
voltage
In
the
primary,
Ep
and
that
in
the
secondary,
Es
can
be
shown.
Since
the
magnetic
flux
set
up
by
the
primary
windingthere
will
be
an
induced
EMF
E
in
the
secondary
winding
in
accordance
with
Faraday’s
law,
namely,
E=NΔφ/Δt.
This
same
flux
also
links
the
primary
itself,
inducing
in
it
an
EMF,
Ep.
As
discussed
earlier,
the
induced
voltage
must
lag
the
flux
by
90o,
therefore,
they
are
180o
out
of
phase
with
the
applied
voltage.
Since
no
current
flows
in
the
secondary
winding,
Es=Vs.
The
no-load
primary
current
I0
is
small,
a
few
percent
of
full-load
current.
Thus
the
voltage
in
the
primary
is
small
and
Vp
is
nearly
equal
to
Ep.
The
primary
voltage
and
the
resulting
flux
are
sinusoidal;
thus
the
induced
quantities
Ep
and
Es
vary
as
a
sine
function.
The
average
value
of
the
induced
voltage
given
bywhich
is
Faraday’s
law
applied
to
a
finite
time
interval.
It
follows
thatwhich
N
is
the
number
of
turns
on
the
winding.
Form
ac
circuit
theory,
the
effective
or
root-mean-square
(rms)
voltage
for
a
sine
wave
is
1.11
times
the
average
voltage;
thusSince
the
same
flux
links
with
the
primary
and
secondary
windings,
the
voltage
per
turn
in
each
winding
is
the
same.
HenceAndwhere
Ep
and
Es
are
the
number
of
turn
on
the
primary
and
secondary
windings,
respectively.
The
ratio
of
primary
to
secondary
induced
voltage
is
called
the
transformation
ratio.
Denoting
this
ratio
by
a,
it
is
seen
thatAssume
that
the
output
power
of
a
transformer
equals
its
input
power,
not
a
bad
sumption
in
practice
considering
the
high
efficiencies.
What
we
really
are
saying
is
that
we
are
dealing
with
an
ideal
transformer;
that
is,
it
has
no
losses.
ThusOrwhere
PF
is
the
power
factor.
For
the
above-stated
assumption
it
means
that
the
power
factor
on
primary
and
secondary
sides
are
equal;
thereforefrom
which
is
obtainedIt
shows
that
as
an
approximation
the
terminal
voltage
ratio
equals
the
turns
ratio.
The
primary
and
secondary
current,
on
the
other
hand,
are
inversely
related
to
the
turns
ratio.
The
turns
ratio
gives
a
measure
of
how
much
the
secondary
voltage
is
raised
or
lowered
in
relation
to
the
primary
voltage.
To
calculate
the
voltage
regulation,
we
need
more
information.The
ratio
of
the
terminal
voltage
varies
somewhat
depending
on
the
load
and
its
power
factor.
In
practice,
the
transformation
ratio
is
obtained
from
the
nameplate
data,
which
list
the
primary
and
secondary
voltage
under
full-load
condition.When
the
secondary
voltage
Vs
is
reduced
compared
to
the
primary
voltage,
the
transformation
is
said
to
be
a
step-down
transformer:
conversely,
if
this
voltage
is
raised,
it
is
called
a
step-up
transformer.
In
a
step-down
transformer
the
transformation
ratio
a
is
greater
than
unity
(a>1.0),
while
for
a
step-up
transformer
it
is
smaller
than
unity
(a<1.0).
In
the
event
that
a=1,
the
transformer
secondary
voltage
equals
the
primary
voltage.
This
is
a
special
type
of
transformer
used
in
instances
where
electrical
isolation
is
required
between
the
primary
and
secondary
circuit
while
maintaining
the
same
voltage
level.
Therefore,
this
transformer
is
generally
knows
as
an
isolation
transformer.As
is
apparent,
it
is
the
magnetic
flux
in
the
core
that
forms
the
connecting
link
between
primary
and
secondary
circuit.
In
section
4
it
is
shown
how
the
primary
winding
current
adjusts
itself
to
the
secondary
load
current
when
the
transformer
supplies
a
load.Looking
into
the
transformer
terminals
from
the
source,
an
impedance
is
seen
which
by
definition
equals
Vp
/
Ip.From,we
have
Vp
=
aVs
and
Ip
=
Is/a.In
terms
of
Vs
and
Is
the
ratio
of
Vp
to
Ip
isBut
Vs
/
Is
is
the
load
impedance
ZL
thus
we
can
say
thatThis
equation
tells
us
that
when
an
impedance
is
connected
to
the
secondary
side,
it
appears
from
the
source
as
an
impedance
having
a
magnitude
that
is
a2
times
its
actual
value.
We
say
that
the
load
impedance
is
reflected
or
referred
to
the
primary.
It
is
this
property
of
transformers
that
is
used
in
impedance-matching
applications.4)TRANSFORMERS
UNDER
LOADThe
primary
and
secondary
voltages
shown
have
similar
polarities,
as
indicated
by
the
“dot-making”
convention.
The
dots
near
the
upper
ends
of
the
windings
have
the
same
meaning
as
in
circuit
theory;
the
marked
terminals
have
the
same
polarity.
Thus
when
a
load
is
connected
to
the
secondary,
the
instantaneous
load
current
is
in
the
direction
shown.
In
other
words,
the
polarity
markings
signify
that
when
positive
current
enters
both
windings
at
the
marked
terminals,
the
MMFs
of
the
two
windings
add.Since
the
secondary
voltage
depends
on
the
core
flux
φ0,
it
must
be
clear
that
the
flux
should
not
change
appreciably
if
Es
is
to
remain
essentially
constant
under
normal
loading
conditions.
With
the
load
connected,
a
current
Is
will
flow
in
the
secondary
circuit,
because
the
induced
EMF
Es
will
act
as
a
voltage
source.
The
secondary
current
produces
an
MMF
NsIs
that
creates
a
flux.
This
flux
has
such
a
direction
that
at
anyinstant
in
time
it
opposes
the
main
flux
that
created
it
in
the
first
place.
Of
course,
this
is
Lenz’s
law
in
action.
Thus
the
MMF
represented
by
NsIs
tends
to
reduce
the
core
flux
φ0.
This
means
that
the
flux
linking
the
primary
winding
reduces
and
consequently
the
primary
induced
voltage
Ep,
This
reduction
in
induced
voltage
causes
a
greater
difference
between
the
impressed
voltage
and
the
counter
induced
EMF,
therebyallowing
more
current
to
flow
in
the
primary.
The
fact
that
primary
current
Ip
increases
means
that
the
two
conditions
stated
earlier
are
fulfilled:
the
power
input
increases
to
match
the
power
output,
and
the
primary
MMF
increases
to
offset
the
tendency
of
the
secondary
MMF
to
reduce
the
flux.In
general,
it
will
be
found
that
the
transformer
reacts
almost
instantaneously
to
keep
the
resultant
core
flux
essentially
constant.
Moreover,
the
core
flux
φ0
drops
very
slightly
between
n
o
load
and
full
load
(about
1
to
3%),
a
necessary
condition
if
Ep
is
to
fall
sufficiently
to
allow
an
increase
in
Ip.On
the
primary
side,
Ip’
is
the
current
that
flows
in
the
primary
to
balance
the
demagnetizing
effect
of
Is.
Its
MMF
NpIp’
sets
up
a
flux
linking
the
primary
only.
Since
the
core
flux
φ0
remains
constant.
I0
must
be
the
same
current
that
energizes
the
transformer
at
no
load.
The
primary
current
Ip
is
therefore
the
sum
of
the
current
Ip’
and
I0.Because
the
no-load
current
is
relatively
small,
it
is
correct
to
assume
that
the
primary
ampere-turns
equal
the
secondary
ampere-turns,
since
it
is
under
this
condition
that
the
core
flux
is
essentially
constant.
Thus
we
will
assume
that
I0
is
negligible,
as
itis
only
a
small
component
of
the
full-load
current.When
a
current
flows
in
the
secondary
winding
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年涂料產(chǎn)品綠色認(rèn)證服務(wù)合同
- 2025年度數(shù)據(jù)中心承建與數(shù)據(jù)中心冷卻系統(tǒng)合同4篇
- 2025年度農(nóng)業(yè)保險(xiǎn)產(chǎn)品定制服務(wù)合同8篇
- 二零二五年度農(nóng)村土地經(jīng)營權(quán)流轉(zhuǎn)合同示范文本
- 2025年度苗木養(yǎng)護(hù)與生態(tài)園林景觀優(yōu)化合同3篇
- 2025版門崗信息化管理平臺建設(shè)合同范本4篇
- 二零二五年度體育產(chǎn)業(yè)投資入股合同3篇
- 二零二五年度牛羊肉產(chǎn)品研發(fā)與技術(shù)轉(zhuǎn)移合同3篇
- 二零二五年度促銷員權(quán)益保護(hù)及糾紛處理合同3篇
- 2025年度個(gè)人貨車出租及運(yùn)輸服務(wù)合同3篇
- 紅色革命故事《王二小的故事》
- 《白蛇緣起》賞析
- 海洋工程用高性能建筑鋼材的研發(fā)
- 蘇教版2022-2023學(xué)年三年級數(shù)學(xué)下冊開學(xué)摸底考試卷(五)含答案與解析
- 英語48個(gè)國際音標(biāo)課件(單詞帶聲、附有聲國際音標(biāo)圖)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫安全管理制度
- 2023同等學(xué)力申碩統(tǒng)考英語考試真題
- 家具安裝工培訓(xùn)教案優(yōu)質(zhì)資料
- 在雙減政策下小學(xué)音樂社團(tuán)活動(dòng)有效開展及策略 論文
- envi二次開發(fā)素材包-idl培訓(xùn)
評論
0/150
提交評論