版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年湖北省武漢市東湖高新區(qū)八年級第一學(xué)期期末數(shù)學(xué)試卷一、選擇題(共10小題.每小題3分,共30分).1.下列阿拉伯?dāng)?shù)字是軸對稱圖形的是()A.6 B.0 C.11 D.692.若分式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣13.0.000000301用科學(xué)記數(shù)法表示為()A.3.01×10﹣7 B.3.01×10﹣6 C.0.301×10﹣6 D.30.1×10﹣74.下列運算正確的是()A.x3?x﹣5=x﹣2 B.(3x)3=9x3 C.(﹣a﹣1b2)3=a﹣3b6 D.5.如圖,已知∠ACB=∠ACD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.AC平分∠BAD C.AB=AD D.∠B=∠D6.計算結(jié)果為()A. B. C.a(chǎn)﹣b D.7.下列因式分解正確的是()A.a(chǎn)3﹣a=a(a2﹣1) B.16x2+24x+9=(8x+3)2 C.25x2﹣y2=(5x+y)(5x﹣y) D.2m(m+n)+6n(m+n)=(2m+6n)(m+n)(m+n)8.如圖,已知△CBE≌△DAE,連接AB、∠ABE=65°,∠BAD=30°,則∠CBE的度數(shù)為()A.25° B.30° C.35° D.65°9.兩個小組同時攀登一座480m高的山,第一組的攀登速度是第二組的1.5倍,第一組比第二組早0.5h到達頂峰,設(shè)第二組的攀登速度為vm/min,則下列方程正確的是()A. B. C. D.10.如圖,在△ABC中,AD平分∠CAB,下列說法:①若CD:BD=2:3,則S△ACD:S△ABD=4:9;②若CD:BD=2:3,則AC:AB=2:3;③若∠C=90°,AC+AB=20,CD=3,則S△ABC=30;④若∠C=90°,AC:AB=5:13,BC=36,則CD=10.其中正確的是()A.①② B.②③ C.①③④ D.②③④二、填空題(共6小題,每小題3分,共18分)請將答案填在答題卡對應(yīng)題號的位置上11.若分式的值為0,則x的值為.12.若正n邊形的每個內(nèi)角的度數(shù)為140°.則n的值是.13.已知,則=.14.如圖,已知∠ABC=60°,DB=12,DE=DF,若EF=2,則BE=.15.已知,在△OPQ中,OP=OQ,OP的垂直平分線交OP于點D,交直線OQ于點E,∠OEP=50°,則∠POQ=.16.如圖,△DOE的角平分線OF、EF相交于點F、若∠DOE=60°,EF交OD于A、DF交OE于B.直接寫出AD、BE、DE的數(shù)量關(guān)系.三、解答題(共8小題.共72分)下列各題解答應(yīng)寫出文字說明,證明過程或演算過程17.(1)計算:(a+1)(a﹣3);(2)因式分解:(x+y)2﹣(2x)2.18.(1)解分式方程:.(2)先化簡,再求值:,其中a=5.19.如圖,點B、E、C、F在一條直線上,AB=DE,BE=CF,∠B=∠DEF,求證:∠A=∠D.20.如圖,在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=α,若DE=8,BD=2,求CE的長.21.如圖是由小正方形組成的8×6網(wǎng)格,每個小正方形的頂點叫做格點.△ABC的三個頂點都是格點,E為AC上一格點,點D為AB上任一點.僅用無刻度的直尺在給定網(wǎng)格中完成畫圖,畫圖結(jié)果用實線表示,畫圖過程用虛線表示.(1)在圖1中,先將線段AB向右平移得到線段CF、畫出線段CF,再在CF上畫點G,使CG=AD;(2)在圖2中,先畫出點D關(guān)于AC的對稱點H、再在AB上找一點G,使∠GEA=∠DEC.22.“以形釋數(shù)”是利用數(shù)形結(jié)合思想證明代數(shù)問題的一種體現(xiàn),做整式的乘法運算時利用幾何直觀的方法獲取結(jié)論,在解決整式運算問題時經(jīng)常運用.例1:如圖1,可得等式:a(b+c)=ab+ac;例2:由圖2,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)如圖3,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,從中你發(fā)現(xiàn)的結(jié)論用等式表示為;(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=10,a2+b2+c2=36.求ab+bc+ac的值.(3)如圖4,拼成AMGN為大長方形,記長方形ABCD的面積與長方形EFGH的面積差為S.設(shè)CD=x,若S的值與CD無關(guān),求a與b之間的數(shù)量關(guān)系.23.【問題提出】如圖1,在△ABC中,AB=AC,D是BC延長線上的點.連AD,以AD為邊作△ADE(E、D在AC同側(cè)),使DA=DE、∠ADE=∠BAC,連CE.若∠BAC=90°,判斷CE與AC的位置關(guān)系,并說明理由.(1)【問題探究】先將問題特殊化.如圖2,當(dāng)D在線段BC上,∠BAC=60°時,直接寫出∠ACE的度數(shù);(2)再探究具體情形、如圖1,判斷CE與AC的位置關(guān)系,并說明理由.(3)如圖3,在△ABC中,AB=AC.點E為△ABC外一點,AD⊥BE于D,∠BEC=∠BAC,DE=3,EC=2.則BD的長為.24.在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,A(a,0),B(0,b),且a,b滿足(a﹣4)2+|a﹣b|=0.(1)求點A、點B的坐標(biāo).(2)P(0,t)為y軸上一動點,連接AP,過點P在線段AP上方作PM⊥PA,且PM=PA.①如圖1,若點P在y軸正半軸上,點M在第一象限,連接MB,過點B作PM的平行線交x軸于點R,求點R的坐標(biāo)(用含t的式子表示).②如圖2,連接OM,探究當(dāng)OM取最小值時,線段OM與AB的關(guān)系.
參考答案一、選擇題(共10小題.每小題3分,共30分)下列各題中均有四個備選答案,其中有且只有一個是正確的,請在答題卡上將正確答案的代號涂黑.1.下列阿拉伯?dāng)?shù)字是軸對稱圖形的是()A.6 B.0 C.11 D.69【分析】直接根據(jù)軸對稱圖形的定義判斷即可.解:6、0、11、69中,只有0沿著一條直線對折后兩部分能夠完全重合,故選:B.【點評】本題考查了軸對稱圖形的定義,熟練掌握軸對稱圖形的定義是解答本題的關(guān)鍵.如果一個圖形沿著一條直線對折后兩部分能夠完全重合,那么這個圖形就叫做軸對稱圖形.2.若分式有意義,則實數(shù)x的取值范圍是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣1【分析】先根據(jù)分式有意義的條件列出關(guān)于x的不等式,求出x的取值范圍即可.解:∵分式有意義,∴x+1≠0,解得x≠﹣1.故選:B.【點評】本題考查的是分式有意義的條件,熟知分式有意義的條件是分母不等于零是解答此題的關(guān)鍵.3.0.000000301用科學(xué)記數(shù)法表示為()A.3.01×10﹣7 B.3.01×10﹣6 C.0.301×10﹣6 D.30.1×10﹣7【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值≥10時,n是正整數(shù);當(dāng)原數(shù)的絕對值<1時,n是負整數(shù).解:0.000000301=3.01×10﹣7.故選:A.【點評】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),正確確定a的值以及n的值是解決問題的關(guān)鍵.4.下列運算正確的是()A.x3?x﹣5=x﹣2 B.(3x)3=9x3 C.(﹣a﹣1b2)3=a﹣3b6 D.【分析】分別根據(jù)同底數(shù)冪的乘法和積的乘方計算后判斷即可.解:A.x3?x﹣5=x﹣2,故原選項符合題意;B.(3x)3=27x3,故原選項不合題意;C.(﹣a﹣1b2)3=﹣a﹣3b6,故原選項不合題意;D.,故原選項不合題意.故選:A.【點評】本題考查了同底數(shù)冪的乘法和積的乘方,熟練掌握運算法則是解題的關(guān)鍵.5.如圖,已知∠ACB=∠ACD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.AC平分∠BAD C.AB=AD D.∠B=∠D【分析】分別根據(jù)全等三角形的判定方法判斷即可.解:A.∵∠ACB=∠ACD,CB=CD,CA=CA,根據(jù)SAS可判定△ABC≌△ADC,不符合題意;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∵∠ACB=∠ACD,CA=CA,根據(jù)ASA可判定△ABC≌△ADC,不符合題意;C.∵∠ACB=∠ACD,AB=AD,CA=CA,根據(jù)SSA不能判定△ABC≌△ADC,符合題意;D.∵∠ACB=∠ACD,∠B=∠D,CA=CA,根據(jù)AAS可判定△ABC≌△ADC,不符合題意.故選:C.【點評】本題考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解題的關(guān)鍵.注意:AAA、SSA不能判定兩個三角形全等.判定兩個三角形全等時,必須有邊的參與,若有兩邊一角相等時,角必須是兩邊的夾角.6.計算結(jié)果為()A. B. C.a(chǎn)﹣b D.【分析】原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果.解:===,故選:B.【點評】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.7.下列因式分解正確的是()A.a(chǎn)3﹣a=a(a2﹣1) B.16x2+24x+9=(8x+3)2 C.25x2﹣y2=(5x+y)(5x﹣y) D.2m(m+n)+6n(m+n)=(2m+6n)(m+n)(m+n)【分析】根據(jù)因式分解的方法和步驟,依次判斷各個選項即可.解:A、a3﹣a=a(a2﹣1)=a(a+1)(a﹣1),故A不正確,不符合題意;B、16x2+24x+9=(4x+3)2,故B不正確,不符合題意;C、25x2﹣y2=(5x+y)(5x﹣y),故C正確,符合題意;D、2m(m+n)+6n(m+n)=2(m+n)(m+3n),故D不正確,不符合題意;故選:C.【點評】本題主要考查了因式分解,解題的關(guān)鍵是熟練掌握因式分解的方法和步驟,因式分解的方法主要有:提取公因式法,公式法.8.如圖,已知△CBE≌△DAE,連接AB、∠ABE=65°,∠BAD=30°,則∠CBE的度數(shù)為()A.25° B.30° C.35° D.65°【分析】先根據(jù)全等三角形的性質(zhì)求出BE=AE,∠CBE=∠DAE,再根據(jù)等腰三角形的性質(zhì)求出∠BAE=∠ABE=65°,最后根據(jù)∠BAD=30°計算即可.解:∵△CBE≌△DAE,∴BE=AE,∠CBE=∠DAE,∵∠ABE=65°,∴∠BAE=65°,∵∠BAD=30°,∴∠DAE=65°﹣30°=35°,∴∠CBE=∠DAE=35°.故選:C.【點評】本題考查了全等三角形的性質(zhì)和等腰三角形的性質(zhì),熟練掌握各知識點是解題的關(guān)鍵.9.兩個小組同時攀登一座480m高的山,第一組的攀登速度是第二組的1.5倍,第一組比第二組早0.5h到達頂峰,設(shè)第二組的攀登速度為vm/min,則下列方程正確的是()A. B. C. D.【分析】設(shè)第二組的速度為vm/min,則第一組的速度是1.5vm/min,根據(jù)第一組比第二組早30min,列出方程即可.解:設(shè)第二組的速度為vm/min,則第一組的速度是1.5vm/min,由題意,得.故選:D.【點評】本題主要考查了由實際問題抽象出分式方程,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.10.如圖,在△ABC中,AD平分∠CAB,下列說法:①若CD:BD=2:3,則S△ACD:S△ABD=4:9;②若CD:BD=2:3,則AC:AB=2:3;③若∠C=90°,AC+AB=20,CD=3,則S△ABC=30;④若∠C=90°,AC:AB=5:13,BC=36,則CD=10.其中正確的是()A.①② B.②③ C.①③④ D.②③④【分析】分別根據(jù)角平分線的性質(zhì)結(jié)合三角形面積法進行求解即可.解:①設(shè)BC邊上的高為h,則,若CD:BD=2:3,則S△ACD:S△ABD=2:3,故①錯誤;②過D作DE⊥AB,DF⊥AC,∵AD平分∠CAB,∴DE=DF,∵S△ACD:S△ABD=2:3∴因此,若CD:BD=2:3,則AC:AB=2:3,故②正確;③若∠C=90°,過D作DE⊥AB,∵AD平分∠CAB,∴DE=CD=3,∴,故③正確;④若∠C=90°,AC:AB=5:13,BC=36,∴設(shè)AC=5x,AB=13x,則由勾股定理得:BC=12x,∴12x=36,解得x=3,∴AC=15,AB=39,∵S△ACD+S△ABD=S△ABC,∴,即,解得,CD=10.故④正確.故選:D.【點評】本題主要考查了三角形角平分線的性質(zhì)以及運用等積法解決問題,正確運用面積法是解答本題的關(guān)鍵.二、填空題(共6小題,每小題3分,共18分)請將答案填在答題卡對應(yīng)題號的位置上11.若分式的值為0,則x的值為1.【分析】根據(jù)分式的值為零的條件:分子等于0且分母不等于0即可得出答案、解:∵x﹣1=0,x﹣5≠0,∴x=1.故答案為:1.【點評】本題考查了分式的值為零的條件,掌握分式的值為零的條件:分子等于0且分母不等于0是解題的關(guān)鍵、12.若正n邊形的每個內(nèi)角的度數(shù)為140°.則n的值是9.【分析】首先根據(jù)正n邊形的每個內(nèi)角的度數(shù)為140°,即可求得每個外角的度數(shù),再根據(jù)多邊形的外角和為360°,即可得到n的值.解:∵正n邊形的每個內(nèi)角都是140°,∴該正n邊形的每個外角的度數(shù)=180°﹣140°=40°,∴,故答案為:9.【點評】本題考查了多邊形的外角和定理:掌握多邊形的外角和為360°是關(guān)鍵.13.已知,則=11.【分析】對已知條件等號兩邊平方,整理后求解即可.解:∵,∴,即,∴.故答案為:11.【點評】此題考查了分式的化簡求值,解題的關(guān)鍵是根據(jù)a與互為倒數(shù)的特點,利用完全平方公式求解.14.如圖,已知∠ABC=60°,DB=12,DE=DF,若EF=2,則BE=5.【分析】過點D作DG⊥BC,垂足為G.利用等腰三角形的“三線合一”先求出EG,利用含30°角的直角三角形的邊間關(guān)系,再求出BG,最后利用線段的和差關(guān)系求出BE.解:過點D作DG⊥BC,垂足為G.∵DE=DF,DG⊥BC,EF=2,∴.在Rt△DBG中,∵∠ABC=60°,∴∠BDG=30°.∵DB=12,∴.∴BE=BG﹣EG=6﹣1=5.故答案為:5.【點評】本題考查了等腰三角形的性質(zhì)和含30°角的直角三角形,掌握“等腰三角形底邊上的高線、頂角的角平分線及底邊的中線,三線重合”、“直角三角形中,30°角所對的邊等于斜邊的一半”是解決本題的關(guān)鍵.15.已知,在△OPQ中,OP=OQ,OP的垂直平分線交OP于點D,交直線OQ于點E,∠OEP=50°,則∠POQ=65°或115°.【分析】△OPQ為銳角三角形時,根據(jù)線段垂直平分線的定義得到∠ODE=∠PDE=90°,從而求得,繼而可得∠EOD=90°﹣25°=65°,問題得解;△OPQ為鈍角三角形時,同理可得∠EOD=90°﹣25°=65°,即∠POQ=180°﹣∠EOD,問題得解.解:①如圖1,△OPQ為銳角三角形時,∵DE垂直且平分OP,∴∠ODE=∠PDE=90°,OE=PE,∴,又∵∠OEP=50°,∴∠OED=∠PED=25°,∴∠EOD=90°﹣25°=65°;②如圖2,△OPQ為鈍角三角形時,∵DE垂直且平分OP,∴∠ODE=∠PDE=90°,OE=PE,∴,又∵∠OEP=50°,∴∠OED=∠PED=25°,∴∠EOD=90°﹣25°=65°,∴∠POQ=180°﹣65°=115°.故答案為:65°或115°.【點評】本題考查的是線段垂直平分線的定義以及等腰三角形的性質(zhì)、三角形的內(nèi)角和定理,掌握這些性質(zhì)及定理,準(zhǔn)確作出圖形是解題的關(guān)鍵.16.如圖,△DOE的角平分線OF、EF相交于點F、若∠DOE=60°,EF交OD于A、DF交OE于B.直接寫出AD、BE、DE的數(shù)量關(guān)系DE=DA+EB.【分析】由三角形定理得∠ODE+∠OED=120°.由角平分線定義得∠AFD=60°,∠BFE=60°,在DE上截取DH=DA,連接FH,證明△DAF≌△DHF,進一步得出∠EFH=∠EFB,再證明△HFE≌△EFB,得出EH=EB,從而可得出結(jié)論解:在△ODE中,∠O=60°,∴∠ODE+∠OED=180°﹣∠O=120°,∵DB平分∠ODE,EA平分∠OED,∴,∴,∴∠AFD=60°,∴∠BFE=∠AFD=60°,在DE上截取DH=DA,連接FH,在△DAF和△DHF中,∴△DAF≌△DHF(SAS),∴∠DFA=∠DFH,∴∠DFH=60°,∴∠EFH=180°﹣60°﹣60°=60°,∴∠EFH=∠EFB,在△CFH和△CFB中,,∴△HFE≌△EFB(ASA),∴EH=EB,∵DE=DH+EH,∴DE=DA+EB.【點評】本題主要考查了全等三角形的判定與性質(zhì),線段的和與差,正確作出輔助線構(gòu)造全等三角形是解答本題的關(guān)鍵.三、解答題(共8小題.共72分)下列各題解答應(yīng)寫出文字說明,證明過程或演算過程17.(1)計算:(a+1)(a﹣3);(2)因式分解:(x+y)2﹣(2x)2.【分析】(1)直接根據(jù)多項式乘以多項式計算即可;(2)先根據(jù)平方差公式化簡,再合并同類項即可.解:(1)(a+1)(a﹣3)=a2+a﹣3a﹣3=a2﹣2a﹣3;(2)(x+y)2﹣(2x)2=(x+y+2x)(x+y﹣2x)=(3x+y)(y﹣x).【點評】本題考查了多項式乘以多項式和公式法因式分解,熟練掌握運算法則是解題的關(guān)鍵.18.(1)解分式方程:.(2)先化簡,再求值:,其中a=5.【分析】(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(2)原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,把a的值代入計算即可求出值.解:(1)方程兩邊乘x(x+3),得2(x+3)=5x解得x=2經(jīng)檢驗,x(x+3)≠0所以,原分式方程的解為x=2(2)===,當(dāng)a=5時,原式=【點評】此題考查了分式的化簡求值,以及解分式方程,熟練掌握運算法則是解本題的關(guān)鍵.19.如圖,點B、E、C、F在一條直線上,AB=DE,BE=CF,∠B=∠DEF,求證:∠A=∠D.【分析】先證明BC=EF,再證明△ABC≌△DEF(SAS),即可作答.【解答】證明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC與△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.【點評】本題主要考查了全等三角形的判定與性質(zhì),掌握全等三角形的判定方法是解答本題的關(guān)鍵.20.如圖,在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=α,若DE=8,BD=2,求CE的長.【分析】先根據(jù)角的加減求出∠ECA=∠BAD,再根據(jù)AAS證明△BAD≌△ACE,再求出AD的值即可.解:∵∠AEC=∠BAC=α,∴∠ECA+∠CAE=180°﹣α,∠BAD+∠CAE=180°﹣α,∴∠ECA=∠BAD,在△BAD與△ACE中,,∴△BAD≌△ACE({AAS}),∴CE=AD,AE=BD=2,∵DE=8,∴AD=DE﹣AE=8﹣2=6,∴CE=AD=6.【點評】本題考查了角的加減和全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.21.如圖是由小正方形組成的8×6網(wǎng)格,每個小正方形的頂點叫做格點.△ABC的三個頂點都是格點,E為AC上一格點,點D為AB上任一點.僅用無刻度的直尺在給定網(wǎng)格中完成畫圖,畫圖結(jié)果用實線表示,畫圖過程用虛線表示.(1)在圖1中,先將線段AB向右平移得到線段CF、畫出線段CF,再在CF上畫點G,使CG=AD;(2)在圖2中,先畫出點D關(guān)于AC的對稱點H、再在AB上找一點G,使∠GEA=∠DEC.【分析】(1)先將線段AB向右平移得到線段CF、連接DE并延長交CF于點G即可;(2)作出點D關(guān)于AC的對稱點H,連接HE并延長交AC于點G,則點G即為所求作.解:(1)如圖所示,CG即為所作,(2)如圖,點G即為所作.【點評】本題考查作圖﹣軸對稱變換,平行四邊形的判定和性質(zhì),垂直平分線的性質(zhì)等知識,理解題意,靈活運用所學(xué)知識是解題的關(guān)鍵.22.“以形釋數(shù)”是利用數(shù)形結(jié)合思想證明代數(shù)問題的一種體現(xiàn),做整式的乘法運算時利用幾何直觀的方法獲取結(jié)論,在解決整式運算問題時經(jīng)常運用.例1:如圖1,可得等式:a(b+c)=ab+ac;例2:由圖2,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)如圖3,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,從中你發(fā)現(xiàn)的結(jié)論用等式表示為(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中所得到的結(jié)論,解決下面的問題:已知a+b+c=10,a2+b2+c2=36.求ab+bc+ac的值.(3)如圖4,拼成AMGN為大長方形,記長方形ABCD的面積與長方形EFGH的面積差為S.設(shè)CD=x,若S的值與CD無關(guān),求a與b之間的數(shù)量關(guān)系.【分析】(1)正方形面積為(a+b+c)2,小塊四邊形面積總和為a2+b2+c2+2ab+2bc+2ac,由面積相等即可求解;(2)根據(jù)(1)中的結(jié)論,將式子的值代入計算即可求解;(3)BC=2a,DE=3a,EH=CF=b,EF=CD+CF﹣DE=x+b﹣3a,根據(jù)S=S長方形ABCD﹣S長方形EFGH,即可求解.解:(1)∵正方形面積為(a+b+c)2,小塊四邊形面積總和為a2+b2+c2+2ab+2bc+2ac∴由面積相等可得:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案為:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(2)由(1)可知2ab+abc+2ac=(a+b+c)2﹣(a2+b2+c2),∵a+b+c=10,a2+b2+c2=36;∴2(ab+bc+ac)=(a+b+c)2﹣(a2+b2+c2)=100﹣36=64,∴.(3)由題意知,BC=2a,DE=3a,EH=CF=b,EF=CD+CF﹣DE=x+b﹣3a,∵S長方形ABCD﹣S長方形EFGH,∴S=CD?BC﹣EH?EF=x?2a﹣b?(x+b﹣3a),即S=2ax﹣bx﹣b2+3ab=(2a﹣b)x﹣b2+3ab,又∵S為定值,∴2a﹣b=0,即b=2a.【點評】本題主要考查多項式乘多項式,掌握整式混合運算法則是解題的關(guān)鍵.23.【問題提出】如圖1,在△ABC中,AB=AC,D是BC延長線上的點.連AD,以AD為邊作△ADE(E、D在AC同側(cè)),使DA=DE、∠ADE=∠BAC,連CE.若∠BAC=90°,判斷CE與AC的位置關(guān)系,并說明理由.(1)【問題探究】先將問題特殊化.如圖2,當(dāng)D在線段BC上,∠BAC=60°時,直接寫出∠ACE的度數(shù)60°;(2)再探究具體情形、如圖1,判斷CE與AC的位置關(guān)系,并說明理由.(3)如圖3,在△ABC中,AB=AC.點E為△ABC外一點,AD⊥BE于D,∠BEC=∠BAC,DE=3,EC=2.則BD的長為5.【分析】(1)根據(jù)題意可得△ADE、△ABC為等邊三角形即可知∠DAE=60°,∠B=60°,證明△ABD≌△ACE,得∠ACE=∠B=60°;(2)過D作DF⊥CD,交AC的延長線于F,根據(jù)SAS證明△AFD≌△ECD可得∠FAD=∠CED,從而可得結(jié)論;(3)過A作AF⊥CE,交CE的延長線于F,分別證明△ABD≌△ACF和Rt△ADE≌Rt△AFE可得結(jié)論.解:(1)∵AB=AC,∠BAC=60°∴△ABC為等邊三角形∴∠B=60°∵∠ADE=∠BAC∴∠ADE=60°∵DA=DE∴△ADE是等邊三角形,∴∠DAE=60°∴∠DAE=∠BAC∴∠BAD=∠CAE又AB=AC,DA=DE∴△ABD≌△ACE,∴∠ACE=∠B=60°.故答案為:60°;(2)過D作DF⊥CD,交AC的延長線于F,如圖所示:則∠FDC=90°,∵AB=AC,∠BAC=90°,∴△ABC為等腰直角三角形,∴∠ACB=45°,∴∠FCD=∠ACB=45°,∴△FDC為等腰直角三角形,∴DC=DF,∠CDF=90°,∵DA=DE,∠ADE=∠BAC,∴△ADE為等腰直角三角形,∴∠ADE=90°,∴∠ADE+∠ADC=∠CDF+∠ADC,即∠ADF=∠EDC,在△AFD和△ECD中,,∴△AFD≌△ECD(SAS),∴∠FAD=∠CED,∵∠FAD+∠ACE=∠CED+∠ADE,∴∠ACE=∠ADE=90°∴CE⊥AC(3)過A作AF⊥CE,交CE的延長線于F,如圖所示:則∠AFC=90°,∵AD⊥BE,∴∠ADB=∠ADE=90°,∵∠BEC=∠BAC,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(AAS),∴BD=CF,AD=AF,在Rt△AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車充電樁互聯(lián)互通平臺建設(shè)合同(二零二五版)4篇
- 2025年度城市軌道交通客運服務(wù)合同書-地鐵與公交聯(lián)運合作協(xié)議4篇
- 二零二五年度美甲店員工培訓(xùn)與發(fā)展計劃合同4篇
- 二零二五年度美發(fā)店員工培訓(xùn)與職業(yè)發(fā)展規(guī)劃合同4篇
- 2025年度代駕服務(wù)合同(含司機休息保障)4篇
- 2025年度二手車交易運輸合同規(guī)范3篇
- 2024版環(huán)保工程勞務(wù)分包合同6篇
- 2025年度公共建筑消防設(shè)施維護保養(yǎng)服務(wù)協(xié)議4篇
- 二零二五年度短信息平臺內(nèi)容合作合同2篇
- 2025年建筑玻璃幕墻材料銷售合同2篇
- 北師大版小學(xué)三年級上冊數(shù)學(xué)第五單元《周長》測試卷(含答案)
- 國家安全責(zé)任制落實情況報告3篇
- DB45T 1950-2019 對葉百部生產(chǎn)技術(shù)規(guī)程
- 2024年度順豐快遞冷鏈物流服務(wù)合同3篇
- 六年級下冊【默寫表】(牛津上海版、深圳版)(漢譯英)
- 合同簽訂培訓(xùn)
- 新修訂《保密法》知識考試題及答案
- 電工基礎(chǔ)知識培訓(xùn)課程
- 鐵路基礎(chǔ)知識題庫單選題100道及答案解析
- 金融AI:顛覆與重塑-深化理解AI在金融行業(yè)的實踐與挑戰(zhàn)
- 住宅樓安全性檢測鑒定方案
評論
0/150
提交評論