版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
旋轉(zhuǎn)幾何綜合(篇)(Word版含解析)一、初三數(shù)學(xué)旋轉(zhuǎn)易錯題壓軸題(難)1.如圖1,在中,,,點,分別在邊,上,,連接,點,,分別為,,的中點.(1)觀察猜想:圖1中,線段與的數(shù)量關(guān)系是_________,位置關(guān)系是_________;(2)探究證明:把繞點逆時針方向旋轉(zhuǎn)到圖2的位置,連接,,,判斷的形狀,并說明理由;(3)拓展延伸:把繞點在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出面積的最大值.【答案】(1),;(2)等腰直角三角形,見解析;(3)【解析】【分析】(1)由三角形中位線定理及平行的性質(zhì)可得PN與PM等于DE或CE的一半,又△ABC為等腰直角三角形,AD=AE,所以得PN=PM,且互相垂直;(2)由旋轉(zhuǎn)可推出,再利用PM與PN皆為中位線,得到PM=PN,再利用角度間關(guān)系推導(dǎo)出垂直即可;(3)找到面積最大的位置作出圖形,由(2)可知PM=PM,且PM⊥PN,利用三角形面積公式求解即可.【詳解】(1),;已知點,,分別為,,的中點,根據(jù)三角形的中位線定理可得,,,根據(jù)平行線性質(zhì)可得,在中,,,可得,即得,故答案為:;.(2)等腰直角三角形,理由如下:由旋轉(zhuǎn)可得,又,∴∴,,∵點,分別為,的中點∴是的中位線∴,且,同理可證,且∴,,,∴,,∴,即為等腰直角三角形.(3)把繞點旋轉(zhuǎn)的如圖的位置,此時,且、的值最長,由(2)可知,所以面積最大值為.【點睛】本題主要考查三角形中位線的判定及性質(zhì)、全等三角形的判定及性質(zhì)、等腰直角三角形的判定及性質(zhì)、旋轉(zhuǎn)的性質(zhì)等相關(guān)知識,解題關(guān)鍵在于找到圖形中各角度之間的數(shù)量關(guān)系.2.已知:如圖①,在矩形ABCD中,AB=5,,AE⊥BD,垂足是E.點F是點E關(guān)于AB的對稱點,連接AF、BF.(1)求AE和BE的長;(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當(dāng)點F分別平移到線段AB、AD上時,求出相應(yīng)的m的值;(3)如圖②,將△ABF繞點B順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的為,在旋轉(zhuǎn)過程中,設(shè)所在的直線與直線AD交于點P,與直線BD交于點Q,若△DPQ為等腰三角形,請直接寫出此時DQ的長.【答案】(1)4;3(2)3或(3)或【解析】【分析】(1)由矩形的性質(zhì),利用勾股定理求解的長,由等面積法求解,由勾股定理求解即可,(2)利用對稱與平移的性質(zhì)得到:AB∥A′B′,∠4=∠1,BF=B′F′=3.當(dāng)點F′落在AB上時,證明BB′=B′F′即可得到答案,當(dāng)點F′落在AD上時,證明△B′F′D為等腰三角形,從而可得答案,(3)分4種情況討論:①如答圖3﹣1所示,點Q落在BD延長線上,證明A′Q=A′B,利用勾股定理求解從而求解,②如答圖3﹣2所示,點Q落在BD上,證明點A′落在BC邊上,利用勾股定理求解從而可得答案,③如答圖3﹣3所示,點Q落在BD上,證明∠A′QB=∠A′BQ,利用勾股定理求解,從而可得答案,④如答圖3﹣4所示,點Q落在BD上,證明BQ=BA′,從而可得答案.【詳解】解:(1)在Rt△ABD中,AB=5,,由勾股定理得:..在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)設(shè)平移中的三角形為△A′B′F′,如答圖2所示:由對稱的性質(zhì)可知,∠1=∠2.由平移性質(zhì)可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①當(dāng)點F′落在AB上時,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②當(dāng)點F′落在AD上時,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,A′B′⊥AD,∴△B′F′D為等腰三角形,∴B′D=B′F′=3,,即.(3)DQ的長度分別為或.在旋轉(zhuǎn)過程中,等腰△DPQ依次有以下4種情形:①如答圖3﹣1所示,點Q落在BD延長線上,且PD=DQ,∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:.;②如答圖3﹣2所示,點Q落在BD上,且PQ=DQ,∴∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,∵PD∥BC,∴此時點A′落在BC邊上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:即:解得:,;③如答圖3﹣3所示,點Q落在BD上,且PD=DQ,∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,.∵∠1=∠2,.,,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:,;④如答圖3﹣4所示,點Q落在BD上,且PQ=PD,∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,.綜上所述,DQ的長度分別為或.【點睛】本題是幾何變換壓軸題,涉及旋轉(zhuǎn)與平移變換、矩形、勾股定理、等腰三角形等知識點.第(3)問難度很大,解題關(guān)鍵是畫出各種旋轉(zhuǎn)圖形,依題意進(jìn)行分類討論;在計算過程中,注意識別旋轉(zhuǎn)過程中的不變量,注意利用等腰三角形的性質(zhì)簡化計算.3.綜合與探究:如圖1,的直角頂點在坐標(biāo)原點,點在軸正半軸上,點在軸正半軸上,,,將線段繞點順時針旋轉(zhuǎn)得到線段,過點作軸于點,拋物線經(jīng)過點,與軸交于點,直線與軸交于點.(1)求點的坐標(biāo)及拋物線的表達(dá)式;(2)如圖2,已知點是線段上的一個動點,過點作的垂線交拋物線于點(點在第一象限),設(shè)點的橫坐標(biāo)為.①點的縱坐標(biāo)用含的代數(shù)式表示為________;②如圖3,當(dāng)直線經(jīng)過點時,求點的坐標(biāo),判斷四邊形的形狀并證明結(jié)論;③在②的前提下,連接,點是坐標(biāo)平面內(nèi)的點,若以,,為頂點的三角形與全等,請直接寫出點的坐標(biāo).【答案】(1)點的坐標(biāo)為,;(2)①;②點F的坐標(biāo)為,四邊形為正方形,證明見解析;③點的坐標(biāo)為或或.【解析】【分析】(1)根據(jù)已知條件與旋轉(zhuǎn)的性質(zhì)證明,根據(jù)全等三角形的性質(zhì)得出點C的坐標(biāo),結(jié)合點E的坐標(biāo),根據(jù)待定系數(shù)法求出拋物線的表達(dá)式;(2)①設(shè)直線AC的表達(dá)式為,由點A、C的坐標(biāo)求出直線AC的表達(dá)式,進(jìn)而得解;②過點作軸于點,過點作軸,垂足為點,的延長線與的延長線交于點,根據(jù)等腰三角形三線合一得出,結(jié)合①由平行線分線段成比例得出點G的坐標(biāo),根據(jù)待定系數(shù)法求出直線的表達(dá)式,結(jié)合拋物線的表達(dá)式求出點F;利用勾股定理求出,結(jié)合可得出結(jié)論;③根據(jù)直線AC的表達(dá)式求出點H的坐標(biāo),設(shè)點N坐標(biāo)為,根據(jù)勾股定理分別求出,,,,然后分兩種情況考慮:若△FHC≌△FHN,則FN=FC,NH=CH,若△FHC≌△HFN,則FN=CH,NH=FC,分別列式求解即可.【詳解】解:(1),,點的坐標(biāo)為,點的坐標(biāo)為,線段繞點順時針旋轉(zhuǎn)得到線段,,,,在中,,,軸于點,,.,,,,,點的坐標(biāo)為,∵拋物線的圖象經(jīng)過點,與軸交于點,,解得,,∴拋物線的表達(dá)式為;(2)①設(shè)直線AC的表達(dá)式為,∵直線AC經(jīng)過點,,∴,解得,,即,∴點的縱坐標(biāo)用含的代數(shù)式表示為:,故答案為:.②過點作軸于點,,,,,,,,,,,,點為,設(shè)直線的表達(dá)式為,將和代入表達(dá)式得,,,即表達(dá)式為,點為直線和拋物線的交點,得,,(舍去),點的坐標(biāo)為,過點作軸,垂足為點,的延長線與的延長線交于點,,,,,在中和中,根據(jù)勾股定理,得,同理可得,,四邊形為菱形,,菱形為正方形;③∵直線AC:與x軸交于點H,∴,解得,x=12,∴,∴,,設(shè)點N坐標(biāo)為,∴,,第一種情況:若△FHC≌△FHN,則FN=FC,NH=CH,∴,解得,,(即點C),∴;第二種情況:若△FHC≌△HFN,則FN=CH,NH=FC,∴,解得,,,∴或,綜上所述,以F,H,N為頂點的三角形與△FHC全等時,點N坐標(biāo)為或或.【點睛】本題是函數(shù)與幾何的綜合題,考查了待定系數(shù)法求函數(shù)的表達(dá)式,全等三角形的判定與性質(zhì),菱形與正方形的判定,旋轉(zhuǎn)的性質(zhì),勾股定理等知識,其中對全等三角形存在性的分析,因有一條公共邊,可對另外兩邊進(jìn)行分類討論,本題有一定的難度,是中考壓軸題.4.如圖1,在正方形ABCD中,點E、F分別在邊BC,CD上,且BE=DF,點P是AF的中點,點Q是直線AC與EF的交點,連接PQ,PD.(1)求證:AC垂直平分EF;(2)試判斷△PDQ的形狀,并加以證明;(3)如圖2,若將△CEF繞著點C旋轉(zhuǎn)180°,其余條件不變,則(2)中的結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.【答案】(1)證明見解析;(2)△PDQ是等腰直角三角形;理由見解析(3)成立;理由見解析.【解析】試題分析:(1)由正方形的性質(zhì)得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出結(jié)論;(2)由直角三角形斜邊上的中線的性質(zhì)得出PD=AF,PQ=AF,得出PD=PQ,再證明∠DPQ=90°,即可得出結(jié)論;(3)由直角三角形斜邊上的中線的性質(zhì)得出PD=AF,PQ=AF,得出PD=PQ,再證明點A、F、Q、P四點共圓,由圓周角定理得出∠DPQ=2∠DAQ=90°,即可得出結(jié)論.試題解析:(1)證明:∵四邊形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵點P是AF的中點,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵點P是AF的中點,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴點A、F、Q、P四點共圓,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考點:四邊形綜合題.5.請閱讀下列材料:問題:如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.李明同學(xué)的思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=∠AP′B=__________;,進(jìn)而求出等邊△ABC的邊長為__________;問題得到解決.請你參考李明同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.【答案】(1)150°,;(2)135°,【解析】試題分析:(1)利用旋轉(zhuǎn)的性質(zhì),得到全等三角形.(2)利用(1)中的解題思路,把△BPC,旋轉(zhuǎn),到△BP’A,連接PP’,BP’,容易證明△APP’是直角三角形,∠BP’E=45°,已知邊BP’=BP=,BE=BP’=1,勾股定理可求得正方形邊長.(1)150°(2)將△BPC繞點B逆時針旋轉(zhuǎn)90°,得△BP′A,則△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=;連接PP′,在Rt△BP′P中,∵BP=BP′=,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP=,∵,即AP′2+PP′2=AP2;∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.過點B作BE⊥AP′,交AP′的延長線于點E;則△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=;∴∠BPC=135°,正方形邊長為.點睛:本題利用題目中的原理遷移解決問題,解題利用了旋轉(zhuǎn)的性質(zhì),一般利用正方形,等腰,等邊三角形的隱含條件,構(gòu)造全等三角形,把沒辦法利用的已知條件轉(zhuǎn)移到方便利用的圖形位置,從而求解.6.在△AOB中,C,D分別是OA,OB邊上的點,將△OCD繞點O順時針旋轉(zhuǎn)到△OC′D′.(1)如圖1,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點,證明:①AC′=BD′;②AC′⊥BD′;(2)如圖2,若△AOB為任意三角形且∠AOB=θ,CD∥AB,AC′與BD′交于點E,猜想∠AEB=θ是否成立?請說明理由.【答案】(1)證明見解析;(2)成立,理由見解析【解析】試題分析:(1)①由旋轉(zhuǎn)的性質(zhì)得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,證出OC′=OD′,由SAS證明△AOC′≌△BOD′,得出對應(yīng)邊相等即可;②由全等三角形的性質(zhì)得出∠OAC′=∠OBD′,又由對頂角相等和三角形內(nèi)角和定理得出∠BEA=90°,即可得出結(jié)論;(2)由旋轉(zhuǎn)的性質(zhì)得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行線得出比例式,得出,證明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由對頂角相等和三角形內(nèi)角和定理即可得出∠AEB=θ.試題解析:(1)證明:①∵△OCD旋轉(zhuǎn)到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D為OA、OB的中點,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延長AC′交BD′于E,交BO于F,如圖1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如圖2所示:∵△OCD旋轉(zhuǎn)到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);旋轉(zhuǎn)的性質(zhì).7.已知:△ABC和△ADE均為等邊三角形,連接BE,CD,點F,G,H分別為DE,BE,CD中點.(1)當(dāng)△ADE繞點A旋轉(zhuǎn)時,如圖1,則△FGH的形狀為,說明理由;(2)在△ADE旋轉(zhuǎn)的過程中,當(dāng)B,D,E三點共線時,如圖2,若AB=3,AD=2,求線段FH的長;(3)在△ADE旋轉(zhuǎn)的過程中,若AB=a,AD=b(a>b>0),則△FGH的周長是否存在最大值和最小值,若存在,直接寫出最大值和最小值;若不存在,說明理由.【答案】(1)△FGH是等邊三角形;(2);(3)△FGH的周長最大值為(a+b),最小值為(a﹣b).【解析】試題分析:(1)結(jié)論:△FGH是等邊三角形.理由如下:根據(jù)三角形中位線定理證明FG=FH,再想辦法證明∠GFH=60°即可解決問題;、(2)如圖2中,連接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先證明△GFH的周長=3GF=BD,求出BD的最大值和最小值即可解決問題;試題解析:解:(1)結(jié)論:△FGH是等邊三角形.理由如下:如圖1中,連接BD、CE,延長BD交CE于M,設(shè)BM交FH于點O.∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=BD,GF∥BD,∵DF=EF,DH=HC,∴FH=EC,F(xiàn)H∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等邊三角形,故答案為:等邊三角形.(2)如圖2中,連接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF==,在Rt△ABF中,BF==,∴BD=CE=BF﹣DF=,∴FH=EC=.(3)存在.理由如下.由(1)可知,△GFH是等邊三角形,GF=BD,∴△GFH的周長=3GF=BD,在△ABD中,AB=a,AD=b,∴BD的最小值為a﹣b,最大值為a+b,∴△FGH的周長最大值為(a+b),最小值為(a﹣b).點睛:本題考查等邊三角形的性質(zhì).全等三角形的判定和性質(zhì)、解直角三角形、三角形的三邊關(guān)系、三角形的中位線的寬等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,正確尋找全等三角形解決問題,學(xué)會利用三角形的三邊關(guān)系解決最值問題,屬于中考壓軸題.8.操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.(1)連接AE,求證:△AEF是等腰三角形;猜想與發(fā)現(xiàn):(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.結(jié)論1:DM、MN的數(shù)量關(guān)系是;結(jié)論2:DM、MN的位置關(guān)系是;拓展與探究:(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.【答案】(1)證明參見解析;(2)相等,垂直;(3)成立,理由參見解析.【解析】試題分析:(1)根據(jù)正方形的性質(zhì)以及等腰直角三角形的知識證明出CE=CF,繼而證明出△ABE≌△ADF,得到AE=AF,從而證明出△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,利用直角三角形斜邊中線等于斜邊一半和三角形中位線定理即可得出結(jié)論.位置關(guān)系是垂直,利用三角形外角性質(zhì)和等腰三角形兩個底角相等性質(zhì),及全等三角形對應(yīng)角相等即可得出結(jié)論;(3)成立,連接AE,交MD于點G,標(biāo)記出各個角,首先證明出MN∥AE,MN=AE,利用三角形全等證出AE=AF,而DM=AF,從而得到DM,MN數(shù)量相等的結(jié)論,再利用三角形外角性質(zhì)和三角形全等,等腰三角形性質(zhì)以及角角之間的數(shù)量關(guān)系得到∠DMN=∠DGE=90°.從而得到DM、MN的位置關(guān)系是垂直.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,DM、MN的位置關(guān)系是垂直;∵在Rt△ADF中DM是斜邊AF的中線,∴AF=2DM,∵M(jìn)N是△AEF的中位線,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的兩個結(jié)論還成立,連接AE,交MD于點G,∵點M為AF的中點,點N為EF的中點,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵點M為AF的中點,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可證:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵M(jìn)N∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的兩個結(jié)論還成立.考點:1.正方形的性質(zhì);2.全等三角形的判定與性質(zhì);3.三角形中位線定理;4.旋轉(zhuǎn)的性質(zhì).9.我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”。(1)概念理解:如圖1,在中,,.,試判斷是否是“等高底”三角形,請說明理由.(2)問題探究:如圖2,是“等高底”三角形,是“等底”,作關(guān)于所在直線的對稱圖形得到,連結(jié)交直線于點.若點是的重心,求的值.(3)應(yīng)用拓展:如圖3,已知,與之間的距離為2.“等高底”的“等底”在直線上,點在直線上,有一邊的長是的倍.將繞點按順時針方向旋轉(zhuǎn)得到,所在直線交于點.求的值.【答案】(1)證明見解析;(2)(3)的值為,,2【解析】分析:(1)過點A作AD⊥直線CB于點D,可以得到AD=BC=3,即可得到結(jié)論;(2)根據(jù)ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC,再由ΔA′BC與ΔABC關(guān)于直線BC對稱,得到∠ADC=90°,由重心的性質(zhì),得到BC=2BD.設(shè)BD=x,則AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到結(jié)論;(3)分兩種情況討論即可:①當(dāng)AB=BC時,再分兩種情況討論;②當(dāng)AC=BC時,再分兩種情況討論即可.詳解:(1)是.理由如下:如圖1,過點A作AD⊥直線CB于點D,∴ΔADC為直角三角形,∠ADC=90°.∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即ΔABC是“等高底”三角形.(2)如圖2,∵ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ΔA′BC與ΔABC關(guān)于直線BC對稱,∴∠ADC=90°.∵點B是ΔAA′C的重心,∴BC=2BD.設(shè)BD=x,則AD=BC=2x,∴CD=3x,∴由勾股定理得AC=x,∴.(3)①當(dāng)AB=BC時,Ⅰ.如圖3,作AE⊥l1于點E,DF⊥AC于點F.∵“等高底”ΔABC的“等底”為BC,l1//l2,l1與l2之間的距離為2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∴AC=.∵ΔABC繞點C按順時針方向旋轉(zhuǎn)45°得到ΔA'B'C,∴∠CDF=45°.設(shè)DF=CF=x.∵l1//l2,∴∠ACE=∠DAF,∴,即AF=2x.∴AC=3x=,可得x=,∴CD=x=.Ⅱ.如圖4,此時ΔABC是等腰直角三角形,∵ΔABC繞點C按順時針方向旋轉(zhuǎn)45°得到ΔA'B'C,∴ΔACD是等腰直角三角形,∴CD=AC=.②當(dāng)AC=BC時,Ⅰ.如圖5,此時△ABC是等腰直角三角形.∵ΔABC繞點C按順時針方向旋轉(zhuǎn)45°得到ΔA′B′C,∴A′C⊥l1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人民間擔(dān)保借款合同(2024版)
- 2024版回遷房買賣合同參考模板
- 2025年度鏟車租賃項目環(huán)境保護(hù)合同4篇
- 2024院同樂分院中草藥種植與加工一體化合同3篇
- 二零二五年度制造業(yè)員工勞動集體合同(綠色生產(chǎn))
- 2025年度藥店藥品信息員聘用合同
- 二零二五年度旅游代理合同主體變更協(xié)議模板
- 二零二五年度物流運輸車輛掛靠與車輛智能監(jiān)控系統(tǒng)合同
- 二零二五年度私人土地買賣合同:合同解除條件
- 二零二五年度財務(wù)系統(tǒng)維護(hù)人員勞務(wù)合同
- 供銷合同(完整版)
- 二零二五年企業(yè)存單質(zhì)押擔(dān)保貸款合同樣本3篇
- 鍋爐安裝、改造、維修質(zhì)量保證手冊
- 油氣行業(yè)人才需求預(yù)測-洞察分析
- (2024)河南省公務(wù)員考試《行測》真題及答案解析
- 1000只肉羊養(yǎng)殖基地建設(shè)項目可行性研究報告
- 《勞保用品安全培訓(xùn)》課件
- 2024版房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)內(nèi)容解讀
- 2024院感年終總結(jié)報告
- 高一化學(xué)《活潑的金屬單質(zhì)-鈉》分層練習(xí)含答案解析
- 04S206自動噴水與水噴霧滅火設(shè)施安裝圖集
評論
0/150
提交評論