畢業(yè)設(shè)計(jì)(論文)-混凝土泵車支腿部分的設(shè)計(jì)_第1頁
畢業(yè)設(shè)計(jì)(論文)-混凝土泵車支腿部分的設(shè)計(jì)_第2頁
畢業(yè)設(shè)計(jì)(論文)-混凝土泵車支腿部分的設(shè)計(jì)_第3頁
畢業(yè)設(shè)計(jì)(論文)-混凝土泵車支腿部分的設(shè)計(jì)_第4頁
畢業(yè)設(shè)計(jì)(論文)-混凝土泵車支腿部分的設(shè)計(jì)_第5頁
已閱讀5頁,還剩69頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

圖書分類號(hào):密級(jí):全套圖紙加V信153893706或扣3346389411畢業(yè)設(shè)計(jì)(論文)混凝土泵車支腿部分的設(shè)計(jì)DESIGNOFTHECONTRETEPUMPTRUCKSTABILIZER學(xué)生姓名學(xué)院名稱機(jī)電工程學(xué)院專業(yè)名稱機(jī)械設(shè)計(jì)制造及其自動(dòng)化指導(dǎo)教師20XX年6月2日徐州工程學(xué)院畢業(yè)設(shè)計(jì)(論文)·式中—混凝土泵車工作時(shí)垂直液壓缸的最大閉鎖力,輻射式支腿垂直液壓缸的等于泵送工作時(shí)的最大支腿反力,=160921.2N。計(jì)算=8(MPa)垂直液壓缸的收放時(shí)間為60s液壓缸流量Q==()0.784=3.69L/min(2)其他液壓缸的選擇后支腿擺動(dòng)油缸的選擇:工作負(fù)載F=N=0.13622=362.2N內(nèi)徑的計(jì)算D=式中P=5Mpa,=2.5,0.95代入數(shù)據(jù),則D=0.015(m)根據(jù)工程機(jī)械用液壓缸內(nèi)徑系列,選取D=80mm活塞桿直徑dd=0.717D=50mm最小導(dǎo)向長度H導(dǎo)向長度應(yīng)滿足H≥+=450/20+80/2=50(mm)導(dǎo)向套滑動(dòng)面長度A取活塞桿直徑的(0.61.0)倍,A取50mm;活塞寬度B為液壓缸內(nèi)徑的(0.61.0)倍,B取50mm。壁厚計(jì)算≥PD/2[]=1.04(mm)選用10mm。缸筒外徑的確定D1=D+2=80+20=100(mm)缸底厚度1≥0.433D2=2.65(mm)取1=10mm。水平液壓缸的收放時(shí)間為30s。液壓缸流量Q==2.75L/min前支腿擺動(dòng)油缸的選擇:工作負(fù)載F=N=0.13990=399N內(nèi)徑的計(jì)算D=式中P=5Mpa,=2.5,0.95代入數(shù)據(jù),則D=0.015(m)根據(jù)工程機(jī)械用液壓缸內(nèi)徑系列,選取D=80mm活塞桿直徑dd=0.717D=50mm最小導(dǎo)向長度H導(dǎo)向長度應(yīng)滿足H≥+=800/20+80/2=100(mm)導(dǎo)向套滑動(dòng)面長度A取活塞桿直徑的(0.61.0)倍,A取50mm;活塞寬度B為液壓缸內(nèi)徑的(0.61.0)倍,B取50mm。壁厚計(jì)算≥PD/2[]=1.04(mm)選用10mm。缸筒外徑的確定D1=D+2=80+20=100(mm)缸底厚度1≥0.433D2=2.65(mm)取1=10mm。前支腿擺動(dòng)液壓缸的收放時(shí)間為30s。液壓缸流量Q==4.28L/min前支腿伸縮油缸的選擇:工作負(fù)載F=N=0.11678=167.8N內(nèi)徑的計(jì)算D=式中P=5Mpa,=2.5,0.95代入數(shù)據(jù),則D=0.015(m)根據(jù)工程機(jī)械用液壓缸內(nèi)徑系列,選取D=63mm活塞桿直徑dd=0.717D=50mm最小導(dǎo)向長度H導(dǎo)向長度應(yīng)滿足H≥+=1200/20+63/2=100(mm)導(dǎo)向套滑動(dòng)面長度A取活塞桿直徑的(0.61.0)倍,A取50mm;活塞寬度B為液壓缸內(nèi)徑的(0.61.0)倍,B取50mm。壁厚計(jì)算≥PD/2[]=1.04(mm)選用6mm。缸筒外徑的確定D1=D+2=63+12=75(mm)缸底厚度1≥0.433D2=2.65(mm)取1=10mm。前支腿擺動(dòng)液壓缸的收放時(shí)間為30s。液壓缸流量Q==2.76L/min(3)液壓泵的選型與計(jì)算液壓泵的主要參數(shù)是:額定工作壓力和額定輸出流量。確定液壓泵的最大工作壓力式中—缸或馬達(dá)的最大工作壓力—系統(tǒng)工作時(shí)的總壓力損失,包括直管中的沿途損失,彎管、各種接頭和閥的損失,對(duì)一般中高壓,流量較大的液壓系統(tǒng)取為2MPa。則14+2=16MPa確定液壓泵的出口流量=1.1(3.69*4+2.35*2+4.28*2+2.76*2)=33.54(L/min)又由條件,,選擇CBQ-F532齒輪泵,屬于高壓齒輪泵,采用鋁合金殼體和DU軸承機(jī)構(gòu),具有體積小、重量輕、轉(zhuǎn)速高、壽命長等優(yōu)點(diǎn)。排量為32mL/r,額定轉(zhuǎn)速為2500r/min,額定壓力為20MPa,驅(qū)動(dòng)功率為26KW。(4)閥的選擇根據(jù)壓力和流量選擇閥如下:節(jié)流閥選擇C-175-C-11,聯(lián)接方式為管式。溢流閥選擇DBD·H15G10電磁換向閥選用DSG型9.5液壓系統(tǒng)性能驗(yàn)算(1)液壓系統(tǒng)壓力損失的驗(yàn)算驗(yàn)算液壓系統(tǒng)壓力損失的目的是為正確調(diào)整系統(tǒng)的工作壓力,使執(zhí)行元件輸出的力滿足設(shè)計(jì)要求,并可根據(jù)壓力損失的大小分析判斷系統(tǒng)設(shè)計(jì)是否符合要求。液壓系統(tǒng)中的壓力損失包括:油液通過管道時(shí)的沿程損失、局部損失和流經(jīng)閥類元件時(shí)局部損失,即:上式中沿程損失和局部損失可按下式計(jì)算式中:、d—直管長度和內(nèi)徑v—液流平均速度—液壓油的重度、—沿程阻力系數(shù)和局部阻力系數(shù)=10m,d=0.02m,=9009.8=8820,=0.5,=0.021,代入上式可得:=0.22MPa=0.06MPa流經(jīng)標(biāo)準(zhǔn)閥類元件時(shí)的壓力損失值與其額定流量、額定壓力損失和實(shí)際通過的流量有關(guān),其近似關(guān)系式為=6MPa式中:和的值可以從產(chǎn)品目錄或樣品本上查出在液壓系統(tǒng)工作循環(huán)中,不同動(dòng)作階段的壓力是不同的,必須分別計(jì)算。當(dāng)已知液壓系統(tǒng)的壓力損失后,就可以確定溢流閥的調(diào)整壓力,它必須大于工作壓力和總壓力損失之和,即=0.28MPa14+0.17=14.17MPa(2)液壓系統(tǒng)總效率的驗(yàn)算㈠根據(jù)系統(tǒng)的壓力損失,確定管路的壓力效率,又稱管路的當(dāng)量機(jī)械效率㈡管路系統(tǒng)中各個(gè)閥的泄露量和溢流量之和稱為管路系統(tǒng)的容積損失,用表示,則管路系統(tǒng)的容積效率為式中:—當(dāng)系統(tǒng)中無蓄能器時(shí),為最大工作流量㈢管路系統(tǒng)的總效率為㈣液壓傳動(dòng)系統(tǒng)的總效率,要考慮液壓泵、管路系統(tǒng)、液壓缸或液壓馬達(dá)各部分的能量損失,它們的總和用符號(hào)表示,則系統(tǒng)的總效率為式中:———液壓泵的輸入功率—液壓系統(tǒng)總的能量損失———液壓泵的總效率———管路系統(tǒng)的總效率———液壓缸和液壓馬達(dá)的總效率(3)液壓系統(tǒng)發(fā)熱溫升的計(jì)算液壓系統(tǒng)工作時(shí),所損失的能量必然轉(zhuǎn)化為熱能,使液壓系統(tǒng)的油溫升高,油溫升高后會(huì)產(chǎn)生許多不良后果,如油溫上升,油液粘度很快下降,泄露增大,容積效率降低;油溫升高還會(huì)使油液形成膠狀物質(zhì),堵塞元件小孔和縫隙,使液壓系統(tǒng)不能正常工作等,因此,對(duì)液壓系統(tǒng)的發(fā)熱溫升,必須進(jìn)行驗(yàn)算并予以控制,對(duì)不同的液壓系統(tǒng),因其工作條件不同,允許的最高溫度也不相同工程機(jī)械正常工作溫度50~80最高允許工作溫度70~80油的溫升〈=35~40kW式中:P—液壓系統(tǒng)的實(shí)際輸入功率,即液壓泵的實(shí)際輸入功率,為26kW—系統(tǒng)的總效率液壓系統(tǒng)所產(chǎn)生的熱量,一部分使油液和系統(tǒng)的溫度上升,另一部分熱量經(jīng)過冷卻表面散發(fā)到空氣中,當(dāng)系統(tǒng)產(chǎn)生的熱量和散發(fā)的熱量相等時(shí),系統(tǒng)達(dá)到了熱平衡狀態(tài),油溫不再上升,而穩(wěn)定在某一溫度上。當(dāng)產(chǎn)生的熱量Q,全部被冷卻表面所散發(fā)時(shí),即式中:—散熱系數(shù),當(dāng)通風(fēng)很差時(shí)為8.5~9.32;當(dāng)通風(fēng)良好時(shí)為15.13~17.46;當(dāng)風(fēng)扇冷卻時(shí)為23.3;循環(huán)水冷卻為110.5~147.6。可選16?!拖渖崦娣e—液壓系統(tǒng)油液的溫升由上式可得:計(jì)算時(shí),如果油箱三邊的結(jié)構(gòu)尺寸比例為1:1:1到1:2:3時(shí),而且油位為油箱高0.8時(shí),其散熱面積的近似計(jì)算式式中:V—油箱的有效容積計(jì)算所得的溫升,加上環(huán)境溫度,應(yīng)不超過油液的最高允許溫度,如果超過允許值,必須適當(dāng)增加油箱散熱面積或采用冷卻器來降低油溫即可滿足要求。結(jié)論至此,我已順利設(shè)計(jì)完混凝土泵車的支腿部分,設(shè)計(jì)中采用了現(xiàn)在市場(chǎng)上最常用的輻射式支腿型式,并通過中心范圍的計(jì)算求解,得出了泵車的最小跨距范圍,并且通過數(shù)學(xué)方法對(duì)支腿的展開角度進(jìn)行了優(yōu)化設(shè)計(jì),使支腿可以最大限度的發(fā)揮作用,穩(wěn)定性達(dá)到設(shè)計(jì)要求;并且利用四點(diǎn)支撐和三點(diǎn)支撐的方法進(jìn)行了支腿豎直反力的求解,并利用求得的豎直反力對(duì)支腿的強(qiáng)度進(jìn)行了校核,經(jīng)過計(jì)算材料的強(qiáng)度可以滿足泵車的工作需要;液壓部分選擇了電磁閥來控制支腿油缸的動(dòng)作,方便實(shí)現(xiàn)自動(dòng)化控制,在垂直支腿油缸上安裝了雙向液壓鎖,避免工作時(shí)出現(xiàn)縮腿現(xiàn)象,在行走時(shí)又避免油缸在重力作用下自動(dòng)伸出,并且雙向液壓鎖與支腿垂直油缸直接相連接防止油管老化爆裂出現(xiàn)危險(xiǎn);液壓系統(tǒng)的有關(guān)部件工作性能也通過計(jì)算證明是符合要求的。我設(shè)計(jì)繪制了混凝土泵車支腿,以及垂直支腿油缸,所設(shè)計(jì)的支腿部分基本符合工況要求,并且具有結(jié)構(gòu)簡(jiǎn)單、經(jīng)濟(jì)、操作安全等優(yōu)點(diǎn)。

致謝到今天我的畢業(yè)設(shè)計(jì)已經(jīng)圓滿的完成了。在此,我要特別感謝我的指導(dǎo)老師仇文寧老師,在這段時(shí)間內(nèi)他給了我莫大的幫助,正由于他的熱心地幫助和指導(dǎo),我的畢業(yè)設(shè)計(jì)才能夠順利的完成。仇老師嚴(yán)謹(jǐn)治學(xué)的態(tài)度和精神也是我在這次設(shè)計(jì)過程中學(xué)到的寶貴的財(cái)富。大學(xué)四年的學(xué)習(xí)和生活即將告別。感謝這四年來各位老師對(duì)我的教誨,各位同學(xué)給我的幫助!感謝與我共同走過大學(xué)的朋友們、同學(xué)們!感謝所有幫助過我的老師、同學(xué)、朋友,同時(shí)祝愿你們?cè)谝院蟮娜兆永?,開心、快樂!

參考文獻(xiàn)[1]馬永輝.工程機(jī)械液壓系統(tǒng)設(shè)計(jì)[Z].北京:機(jī)械工業(yè)出版社,1985.[2]鄭紅.混凝土泵車的穩(wěn)定性分析[A].本溪冶金高等??茖W(xué)校報(bào),2001.[3]張艷偉.混凝土泵車支腿反力計(jì)算及基于ANSYS的支腿結(jié)構(gòu)分析[D].中國機(jī)械工程學(xué)報(bào)。2004[4]朱文堅(jiān),黃平,吳昌林.機(jī)械設(shè)計(jì)[M].北京:高等教育出版社,2005.[5]徐景.機(jī)械設(shè)計(jì)手冊(cè)[M].北京:機(jī)械工業(yè)出版社,1992.[6]李壯云,葛宜遠(yuǎn).液壓元件與系統(tǒng)[M].北京:機(jī)械工業(yè)出版社,2000.[7]朱宏濤.液壓與氣壓傳動(dòng)[M].北京:清華大學(xué)出版社,2005.[8]杜國森.液壓元件產(chǎn)品樣本[M].北京:機(jī)械工業(yè)出版社,2000.[9]何存興.液壓傳動(dòng)與氣壓傳動(dòng)[M].武漢:華中科技大學(xué)出版社,2000.[10]單耀祖.材料力學(xué)[M].北京:高等教育出版社,2003.[11]郝振鐸.垂直支腿油缸的設(shè)計(jì)[R].液壓動(dòng)力報(bào),1985。[12]姜校林、歐溈檳.凝土泵車支腿展開角度的優(yōu)化設(shè)計(jì)[R].建筑機(jī)械,2004。

附錄1英文原文Lecture2.6:WeldabilityofStructuralSteelsThelecturebrieflydiscussesthebasicsoftheweldingprocessandthenexaminesthefactorsgoverningtheweldabilityofstructuralsteels.SUMMARYThefundamentalaspectsoftheweldingprocessarediscussed.Thelecturethenfocusesonthemetallurgicalparametersaffectingtheweldabilityofstructuralsteels.Asteelisconsideredtoexhibitgoodweldabilityifjointsinthesteelpossessadequatestrengthandtoughnessinservice.Solidificationcracking,heataffectedzone-liquationcracking,hydrogen-inducedcracking,lamellartearing,andre-heatcrackingaredescribed.Theseeffectsaredetrimentaltotheperformanceofweldedjoints.Measuresrequiredtoavoidthemareexamined.1.INTRODUCTION1.1ABriefDescriptionoftheWeldingProcessWeldingisajoiningprocessinwhichjointproductioncanbeachievedwiththeuseofhightemperatures,highpressuresorboth.Inthislecture,onlytheuseofhightemperaturestoproduceajointisdiscussedsincethisis,byfar,themostcommonmethodofweldingstructuralsteels.Itisessentiallyaprocessinwhichanintenseheatsourceisappliedtothesurfacestobejoinedtoachievelocalmelting.Itiscommonforfurther"fillermetal"tobeaddedtothemoltenweldpooltobridgethegapbetweenthesurfacesandtoproducetherequiredweldshapeanddimensionsoncooling.Themostcommonweldingprocessesforstructuralsteelworkuseanelectricarcmaintainedbetweenthefillermetalrodandtheworkpiecetoprovidetheintenseheatsource.Ifunprotected,themoltenmetalintheweldpoolcanreadilyabsorboxygenandnitrogenfromtheatmosphere.Thisabsorptionwouldleadtoporosityandbrittlenessinthesolidifiedweldmetal.Thetechniquesusedtoavoidgasabsorptionintheweldpoolvaryaccordingtotheweldingprocess.Themainweldingprocessesusedtojoinstructuralsteelsareconsideredinmoredetailbelow.1.2TheMainWeldingProcessesa.ManualMetalArcwelding(MMA)Inthisprocess,thewelderusesametalstickelectrodewithafusiblemineralcoating,inaholderconnectedtoanelectricalsupply.Anarcisstruckbetweentheelectrodeandtheweldareawhichcompletesthereturncircuittotheelectricitysupply.Thearcmeltsboththeelectrodeandthesurfaceregionoftheworkpiece.Electromagneticforcescreatedinthearchelptothrowdropsofthemoltenelectrodeontothemoltenareaoftheworkpiecewherethetwometalsfusetoformtheweldpool.Theelectrodecoatingoffluxcontributestothecontentoftheweldpoolbydirectadditionofmetalandbymetallurgicalreactionswhichrefinethemoltenmetal.Thefluxalsoprovidesalocalgaseousatmospherewhichpreventsabsorptionofatmosphericgasesbytheweldmetal.Therearemanytypesofelectrodes.Themaindifferencesbetweenthemareinthefluxcoating.Thethreemainclassesofelectrodeareshownbelow:1.Rutile:Generalpurposeelectrodesforapplicationswhichdonotrequirestrictcontrolofmechanicalproperties.Theseelectrodescontainahighproportionoftitaniumoxideinthefluxcoating.2.Basic:Theseelectrodesproduceweldswithbetterstrengthandnotchtoughnessthanrutile.Theelectrodeshaveacoatingwhichcontainscalciumcarbonateandothercarbonatesandfluorspar.3.Cellulosic:Thearcproducedbythistypeofelectrodeisverypenetrating.Theseelectrodeshaveahighproportionofcombustibleorganicmaterialsintheircoating.b.SubmergedArcWelding(SAW)Thisprocessusesabarewireelectrodeandafluxaddedseparatelyasgranulesorpowderoverthearcandweldpool.Thefluxprotectsthemoltenmetalbyformingalayerofslaganditalsostabilisesthearc.Theprocessisusedmainlyinamechanicalsystemfeedingacontinuouslengthofwirefromacoilwhilsttheweldingleadismovedalongthejoint.ASAWmachinemayfeedseveralwires,onebehindtheother,sothatamulti-runweldcanbemade.Submergedarcweldingproducesmoreconsistentjointsthanmanualwelding,butitisnotsuitableforareasofdifficultaccess.c.GasshieldedweldingInthisprocess,abarewireelectrodeisusedandashieldinggasisfedaroundthearcandweldpool.Thisgaspreventscontaminationoftheelectrodeandweldpoolbyair.Therearethreemainvariationsofthisprocessasshownbelow:1.MIG(metal-inertgas)welding-Argonorheliumgasisusedforshielding.Thisprocessisgenerallyusedfornon-ferrousmetals.2.MAG(metal-activegas)welding-Carbondioxide(usuallymixedwithargon)isusedforshielding.Thisprocessisgenerallyusedforcarbonandcarbon-manganesesteels.3.TIG(tungsten-inertgas)-Argonorheliumgasisusedforshieldingandthearcstruckbetweentheworkpieceandanon-consumabletungstenelectrode.Thisprocessisgenerallyusedforthinsheetworkandprecisionwelding.1.3WeldedJointDesignandPreparationTherearetwobasictypesofweldedjointsknownasbuttandfilletwelds[1].SchematicviewsofthesetwoweldtypesareshowninFigure1.Theactualshapeofaweldisdeterminedbythepreparationoftheareatobejoined.Thetypeofweldpreparationdependsontheweldingprocessandthefabricationprocedure.ExamplesofdifferentweldpreparationsareshowninFigure2.Theweldjointhastobelocatedandshapedinsuchawaythatitiseasilyaccessibleintermsofboththeweldingprocessandweldingposition.Thedetailedweldshapeisdesignedtodistributetheavailableheatadequatelyandtoassistthecontrolofweldmetalpenetrationandthustoproduceasoundjoint.Operatorinduceddefectssuchaslackofpenetrationandlackoffusioncanbedifficulttoavoidifthejointpreparationanddesignpreventgoodaccessforwelding.1.4TheEffectoftheWeldingThermalCycleontheMicrostructureTheintenseheatinvolvedintheweldingprocessinfluencesthemicrostructureofboththeweldmetalandtheparentmetalclosetothefusionboundary(theboundarybetweensolidandliquidmetal).Assuch,theweldingcycleinfluencesthemechanicalpropertiesofthejoint.Themoltenweldpoolisrapidlycooledsincethemetalsbeingjoinedactasanefficientheatsink.Thiscoolingresultsintheweldmetalhavingachillcastmicrostructure.Intheweldingofstructuralsteels,theweldfillermetaldoesnotusuallyhavethesamecompositionastheparentmetal.Ifthecompositionswerethesame,therapidcoolingcouldresultinhardandbrittlephases,e.g.martensite,intheweldmetalmicrostructure.Thisproblemisavoidedbyusingweldfillermetalswithalowercarboncontentthantheparentsteel.Theparentmetalclosetothemoltenweldpoolisheatedrapidlytoatemperaturewhichdependsonthedistancefromthefusionboundary.Closetothefusionboundary,peaktemperaturesnearthemeltingpointarereached,whilstmaterialonlyafewmillimetresawaymayonlyreachafewhundreddegreesCelsius.Theparentmaterialclosetothefusionboundaryisheatedintotheaustenitephasefield.Oncooling,thisregiontransformstoamicrostructurewhichisdifferentfromtherestoftheparentmaterial.Inthisregionthecoolingrateisusuallyrapid,andhencethereisatendencytowardstheformationoflowtemperaturetransformationstructures,suchasbainiteandmartensite,whichareharderandmorebrittlethanthebulkoftheparentmetal.Thisregionisknownastheheataffectedzone(HAZ).ThemicrostructureoftheHAZisinfluencedbythreefactors:Thechemicalcompositionoftheparentmetal.Theheatinputrateduringwelding.ThecoolingrateintheHAZafterwelding.ThechemicalcompositionoftheparentmetalisimportantsinceitdeterminesthehardenabilityoftheHAZ.TheheatinputrateissignificantsinceitdirectlyaffectsthegrainsizeintheHAZ.Thelongerthetimespentabovethegraincoarseningtemperatureoftheparentmetalduringwelding,thecoarserthestructureintheHAZ.Generally,ahighheatinputrateleadstoalongerthermalcycleandthusacoarserHAZmicrostructure.ItshouldbenotedthattheheatinputratealsoaffectsthecoolingrateintheHAZ.Asageneralrule,thehighertheheatinputratethelowerthecoolingrate.Thevalueofheatinputrateisafunctionoftheweldingprocessparameters:arcvoltage,arccurrentandweldingspeed.Inadditiontoheatinputrate,thecoolingrateintheHAZisinfluencedbytwootherfactors.First,thejointdesignandthicknessareimportantsincetheydeterminetherateofheatflowawayfromtheweldduringcooling.Secondly,thetemperatureofthepartsbeingjoined,i.e.anypre-heat,issignificantsinceitdeterminesthetemperaturegradientwhichexistsbetweentheweldandparentmetal.1.5ResidualWeldingStressesandDistortionTheintenseheatassociatedwithweldingcausestheregionoftheweldtoexpand.Oncoolingcontractionoccurs.Thisexpansionandsubsequentcontractionisresistedbythesurroundingcoldmaterialleadingtoaresidualstressfieldbeingsetupinthevicinityoftheweld.Withintheweldmetaltheresidualstresstendstobepredominantlytensileinnature.Thistensileresidualstressisbalancedbyacompressivestressinducedintheparentmetal[2].AschematicviewoftheresidualstressfieldobtainedforlongitudinalweldshrinkageisshowninFigure3.ThetensileresidualstressesareuptoyieldpointinmagnitudeintheweldmetalandHAZ.Itisimportanttonotethattheresidualstressesarisebecausethematerialundergoeslocalplasticstrain.ThisstrainmayresultincrackingoftheweldmetalandHAZduringwelding,distortionofthepartstobejoinedorencouragementofbrittlefailureduringservice.Transverseandlongitudinalcontractionsresultingfromweldingcanleadtodistortionifthehotweldmetalisnotsymmetricalabouttheneutralaxisofafabrication[2].AtypicalangularrotationinasingleVbuttweldisshowninFigure4a.Therotationoccursbecausethemajorpartoftheweldisononesideoftheneutralaxisoftheplate,thusinducinggreatercontractionstressesonthatside.Thisleadstoadistortionknownascuspinginaplatefabrication,asshowninFigure4b.Welddistortioncanbecontrolledbypre-settingorpre-bendingajointassemblytocompensateforthedistortionorbyrestrainingtheweldtoresistdistortion.ExamplesofboththesemethodsareshowninFigure5.Distortionproblemsaremosteasilyavoidedbyusingthecorrectweldpreparation.Theuseofnon-symmetricaldoublesidedweldssuchasthoseshowninFigure2eand2iaccommodatesdistortion.Thedistortionfromthesmallsideoftheweld(producedfirst)isremovedwhenthelargerweldisputontheotherside.Thistechniqueisknownasbalancedwelding.Itisnotpossibletopredictaccuratelythedistortioninageometricallycomplicatedfabrication,butonebasicruleshouldbefollowed.Thisruleisthatweldingshouldpreferablybestartedatthecentreofafabricationandallsucceedingweldsbemadefromthecentreout,thusencouragingcontractionstooccurinthefreecondition.Ifdistortionisnotcontrolled,therearetwomethodsofcorrectingit;forceandheat.Thedistortionoflightsectionscanbeeliminatedsimplybyusingforce,e.g.theuseofhydraulicjacksandpresses.Inthecaseofheaviersections,localheatingandcoolingisrequiredtoinducethermalstressescounteractingthosealreadypresent.1.6ResidualStressReliefThemostcommonandefficientwayofrelievingresidualstressesisbyheating.Raisingthetemperatureresultsinaloweryieldstressandallowscreeptooccur.Creeprelievestheresidualstressesthroughplasticdeformation.Steelweldedcomponentsareusuallyheatedtoalowredheat(600C)duringstressrelievingtreatments.Theheatingandcoolingratesduringthisthermalstressreliefmustbecarefullycontrolledotherwisefurtherresidualstresspatternsmaybesetupintheweldedcomponent.Thereisasizelimittothestructureswhichcanbethermallystressrelievedbothbecauseofthesizeoftheovensrequiredandthepossibilityofastructuredistortingunderitsownweight.Itispossible,however,toheattreatindividualjointsinalargestructurebyplacingsmallovensaroundthejointsorbyusingelectricheatingelements.Othermethodsofstressreliefrelyonthermalexpansionprovidingmechanicalforcescapableofcounteractingtheoriginalresidualstresses.Thistechniquecanbeappliedin-situbutapreciseknowledgeofthelocationofthecompressiveresidualstressesisvital,otherwisethelevelofresidualstressmaybeincreasedratherthandecreased.Purelymechanicalstressreliefcanalsobeappliedprovidedsufficientisavailabletoaccommodatethenecessaryplasticdeformation.2.THEWELDABILITYOFSTRUCTURALSTEELS2.1IntroductionIfweldpreparationisgoodandoperatorinduceddefects(e.g.lackofpenetrationorfusion)areavoided,allthecommonstructuralsteelscanbesuccessfullywelded.However,anumberofthesesteelsmayrequirespecialtreatmentstoachieveasatisfactoryjoint.Thesetreatmentsarenotconvenientinallcases.Thedifficultyinproducingsatisfactoryweldedjointsinsomesteelsarisesfromtheextremesofheating,coolingandstrainingassociatedwiththeweldingprocesscombinedwithmicrostructuralchangesandenvironmentalinteractionsthatoccurduringwelding.Itisnotpossibleforsomestructuralsteelstotoleratetheseeffectswithoutjointcrackingoccurring.Thevarioustypesofcrackingwhichcanoccurandtheremedialmeasureswhichcanbetakenarediscussedbelow.2.2WeldMetalSolidificationCrackingSolidificationofthemoltenweldpooloccursbythegrowthofcrystalsawayfromthefusionboundaryandtowardsthecentreoftheweldpool,untileventuallythereisnoremainingliquid.Intheprocessofcrystalgrowth,soluteandimpurityelementsarepushedaheadofthegrowinginterface.Thisprocessisnotsignificantuntilthefinalstagesofsolidificationwhenthegrowingcrystalsinterlockatthecentreoftheweld.Thehighconcentrationofsoluteandimpurityelementscanthenresultintheproductionofalowfreezingpointliquidatthecentreoftheweld.Thisactsasalineofweaknessandcancausecrackingtooccurundertheinfluenceoftransverseshrinkagestrains.Impurityelementssuchassulphurandphosphorusareparticularlyimportantinthistypeofcrackingsincetheycauselowmeltingpointsilicidesandphosphidestobepresentintheweldmetal[3].AschematicviewofsolidificationcrackingisshowninFigure6.Weldmetalswithalowsusceptibilitytosolidificationcracking(lowsulphurandphosphorous)areavailableformoststructuralsteels,butcrackingmaystillariseinthefollowingcircumstances:a.Ifjointmovementoccursduringwelding,e.g.asaresultofdistortion.Atypicalexampleofthisisweldingaroundapatchornozzle.Iftheweldiscontinuous,thecontractionofthefirstpartoftheweldimposesastrainduringsolidificationoftherestoftheweld.b.Ifcontaminationoftheweldmetalwithelementssuchasulphurandphosphorusoccur.Atypicalexampleofthisistheweldingofarticleswithasulphurrichscale,suchasacomponentinasulphurcontainingenvironment.c.Iftheweldmetalhastobridgealargegap,e.g.poorfit-up.Inthiscasethedepthtowidthratiooftheweldbeadmaybesmall.Contractionoftheweldresultsinalargestrainbeingimposedonthecentreoftheweld.d.Iftheparentsteelisnotsuitableinthesensethatthediffusionofimpurityelementsfromthesteelintotheweldmetalcanmakeitsusceptibletocracking.Crackingsusceptibilitydependsonthecontentofalloyingelementwiththeparentmetalandcanbeexpressedinthefollowingequation:Hotcrackingsusceptibility=Note:Thehigherthenumber,thegreaterthesusceptibility.Solidificationcrackingcanbecontrolledbycarefulchoiceofparentmetalcomposition,processparametersandjointdesigntoavoidthecircumstancespreviouslyoutlined.2.3HeatAffectedZone(HAZ)Cracking2.3.1Liquationcracking(burning)TheparentmaterialintheHAZdoesnotmeltasawhole,butthetemperatureclosetothefusionboundarymaybesohighthatlocalmeltingcanoccuratgrainboundariesduetothepresenceofconstituentshavingalowermeltingpointthanthesurroundingmatrix.Finecracksmaybeproducedinthisregioniftheresidualstressishigh.Thesecrackscanbeextendedbyfabricationstressesorduringservice[3].AschematicviewofliquationcrackingisshowninFigure7.Insteelsthelowmeltingpointgrainboundaryfilmscanbeformedfromimpuritiessuchassulphur,phosphorus,boron,arsenicandtin.Aswithsolidificationcracking,increasedcarbon,sulphurandphosphorousmakethesteelmorepronetocracking.Therearetwomainwaysofavoidingliquationcracking.First,careshouldbetakentomakesurethatthesulphurandphosphoruslevelsintheparentmetalarelow.Unfortunately,manysteelspecificationspermithighenoughlevelsofsulphurandphosphorustointroduceariskofliquationcracking.Secondly,theriskofliquationcrackingisaffectedbytheweldingprocessused.Processesincorporatingarelativelyhighheatinputrate,suchassubmergedarcorelectroslagwelding,leadtoagreaterriskofliquationcrackingthan,forexample,manualmetalarcwelding.ThisisthecasesincetheHAZspendslongerattheliquationtemperature(allowinggreatersegregationoflowmeltingpointelements)andthereisagreateramountofthermalstrainaccompanyingwelding.譯文:演講2.6:結(jié)構(gòu)鋼的焊接性演講簡(jiǎn)要討論焊接工藝的基礎(chǔ),然后測(cè)試決定結(jié)構(gòu)鋼焊接性的因素。摘要焊接的基本過程方面在這里被討論。然后把重點(diǎn)放在冶金參數(shù)對(duì)結(jié)構(gòu)鋼的焊接性的影響。一種鋼如果被認(rèn)為有良好的焊接性,如果焊接處有足夠的強(qiáng)度和韌性。凝固裂紋,熱影響區(qū)液化開裂氫致開裂,層狀撕裂,再熱裂解在這里被描述。這些是焊點(diǎn)不利影響的表現(xiàn)。采取的減少這些影響的措施被測(cè)試。1.導(dǎo)言1.1焊接工藝簡(jiǎn)介焊接是材料加入過程,焊縫可以通過高溫、高壓或兩者共同產(chǎn)生。在本文中,只討論高溫產(chǎn)生焊縫。因?yàn)檫@是到目前為止最常用焊接結(jié)構(gòu)鋼的方法。這基本上是這樣一個(gè)過程:激烈的熱源用于工件表面以實(shí)現(xiàn)熔化。同時(shí)將“料”添加到熔融熔池,以連接之間的縫,生產(chǎn)所需的焊縫形狀和尺寸并冷卻。最常見的焊接工藝為鋼結(jié)構(gòu)使用電弧,保持焊棒和工件產(chǎn)生強(qiáng)烈的熱源。如果得不到很好的保障,熔融金屬在熔池隨時(shí)可以接觸大氣中中的氧氣和氮?dú)猓@樣會(huì)導(dǎo)致凝固焊縫金屬中間有孔和脆性。這種技術(shù)被用于避免融池吸收空氣,主要用于焊接工藝加入結(jié)構(gòu)鋼在下面更詳細(xì)的介紹。1.2主要焊接工藝A.手動(dòng)材料電弧焊接在這個(gè)過程中,焊機(jī)采用了金屬電極棒與熔礦物涂層,在持有人連接到電力供應(yīng)。一個(gè)電弧在電極和焊點(diǎn)區(qū)域產(chǎn)生,形成回路,電極表面區(qū)域和工件都是電弧熔體。電磁力產(chǎn)生電弧,幫助失液電極上熔融面積工件的情況下兩個(gè)金屬保險(xiǎn)絲,形成熔池。電極涂層的焊劑貢獻(xiàn)直接熔池,防止了金屬反應(yīng),其中完善熔化金屬。焊劑也提供了一個(gè)氣態(tài)的氣氛阻止吸收大氣中的氣體由焊縫金屬。有有很多類型的電極。主要不同點(diǎn)是在焊劑涂層。三個(gè)主要類別的電極如下所示:金紅石型:通用電極,應(yīng)用在不需要嚴(yán)格控制的機(jī)械性能的場(chǎng)合。這些電極含有高比例的二氧化鈦在焊劑涂層。基本型:這些電極產(chǎn)生比金紅石型焊縫更好的強(qiáng)度和韌性。電極有一個(gè)涂層,其中包含碳酸鈣和其他碳酸鹽巖和螢石。纖維素型:這種的電極類型所產(chǎn)生的電弧是非常精確的。這些電極在他們的涂層有很高比例的可燃有機(jī)材料。B.埋弧焊(saw)這個(gè)過程中采用了裸絲電極和焊劑的補(bǔ)充分被加入以顆?;蚍勰顟B(tài)加入電弧和熔池。焊劑保護(hù)熔融金屬形成一層爐渣和它也使電弧穩(wěn)定。這一過程主要是用于一個(gè)機(jī)械系統(tǒng)的焊接連續(xù)長度的焊絲從一個(gè)線圈,而焊接鉛是沿著焊縫,一個(gè)埋弧焊機(jī)可以吃幾條焊絲。一個(gè)接著另一個(gè),所以一個(gè)多線運(yùn)行焊縫可以做出。埋弧焊比手工焊接產(chǎn)生更一致的焊點(diǎn),但它是不適合難以進(jìn)入的領(lǐng)域。C.氣體保護(hù)焊在這個(gè)過程中,裸絲電極被使用,保護(hù)氣體充滿電弧和熔池周圍。這種氣體,防止由空氣污染電極和熔池。這個(gè)工藝過程中有三個(gè)主要變化,如下所示:MIG(金屬惰性氣體)焊接,氬氣或氦氣用來作為屏蔽氣體。這種工藝一般用于廢鐵結(jié)束的焊接。MAG(金屬活性氣體)焊接,二氧化碳(通常是混合氬)用來作為屏蔽氣體。這種工藝一般用于碳鋼和碳錳鋼。TIG(鎢惰性氣體)焊接,氬氣或氦氣用于屏蔽氣體以及電弧之間工件和非消耗品鎢電極。這個(gè)工藝一般用于薄板的工作和精密焊接。1.3焊接縫的設(shè)計(jì)與準(zhǔn)備有兩個(gè)基本類型的焊接縫稱為對(duì)接焊接縫和角焊縫[1]。這兩個(gè)焊縫類型,如圖1所示。實(shí)際焊縫的形狀是由將要結(jié)合的形狀決定的。焊縫準(zhǔn)備的類型,要看焊接的工藝個(gè)制作的工藝。例如不同的焊接準(zhǔn)備工作正在如圖2所示;該焊縫要設(shè)置形成這樣一種方式:這是方便雙方的焊接工藝和焊接位置。詳細(xì)的焊縫形狀的設(shè)計(jì)可用熱充分分配,并協(xié)助控制焊縫金屬的滲透,從而產(chǎn)生一個(gè)完善的焊縫。操作者導(dǎo)致的缺陷,如缺乏滲透與融合,這些難以避免。如果焊縫籌備和設(shè)計(jì)良好的焊接條件可以防止這些。1.4焊接熱循環(huán)對(duì)微觀結(jié)構(gòu)的影響焊接過程中所涉及激烈的熱,影響焊縫金屬及原金屬和接近融合的邊界的微觀結(jié)構(gòu)(邊界之間的固體和液體金屬)。因此,焊接周期影響焊縫的力學(xué)性能。熔融熔池迅速冷卻,由于金屬被加入作為一個(gè)有效率的散熱片。這冷卻的結(jié)果,在焊縫金屬中有一個(gè)冷鑄態(tài)組織。在焊接結(jié)構(gòu)鋼中,焊接釬料通常不具有與母材料金屬相同的成分。如果成分相同,快速冷卻可能會(huì)導(dǎo)致硬脆階,如馬氏體,在焊縫金屬的微觀結(jié)構(gòu)。這個(gè)問題的避免方法是采用焊接釬料碳含量比較母質(zhì)底。母板金屬接近熔化的熔池迅速加熱到達(dá)一個(gè)由融合邊界決定的溫度。接近融合的邊界,定點(diǎn)溫度接近熔點(diǎn)或已經(jīng)到達(dá)熔點(diǎn)。而材料,只有幾毫米的距離,可能只能達(dá)到幾百攝氏度。母質(zhì)接近融合邊界加熱到奧氏體相場(chǎng)。由于冷卻,這一地區(qū)的變換到一個(gè)不同于其余的母材微觀結(jié)構(gòu)。在這一區(qū)域的冷卻速度通常是快速,因此有一種向低溫結(jié)構(gòu)轉(zhuǎn)型傾向,如貝氏體,馬氏體,這比大部份的母金屬更硬,更脆。這一區(qū)域被稱為熱影響區(qū)(HAZ.)焊接熱影響區(qū)的微觀結(jié)構(gòu)受

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論