UNEP:水體生態(tài)系統與可持續(xù)發(fā)展目標:進展衡量_第1頁
UNEP:水體生態(tài)系統與可持續(xù)發(fā)展目標:進展衡量_第2頁
UNEP:水體生態(tài)系統與可持續(xù)發(fā)展目標:進展衡量_第3頁
UNEP:水體生態(tài)系統與可持續(xù)發(fā)展目標:進展衡量_第4頁
UNEP:水體生態(tài)系統與可持續(xù)發(fā)展目標:進展衡量_第5頁
免費預覽已結束,剩余3頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

3

Dataavailability

FigureES.1

PercentageofSDGenvironment-relatedindicatorswithsufficientdataforanalysisofprogress

ExecutiveSummary

100

80

59%

60

42%

40

34%

20

0

2018

2020

2022

ThismajorimprovementindataavailabilityresultsfromasustainedinvestmentbycountriesintheirnationalstatisticalsystemstocollectandreportdataforSDGindicatorsaspartoftheirsustainabledevelopmentprogrammes,supportedbycapacitydevelopmenteffortsbycustodianagencies.

Thefurtherdevelopmentofmethodologiesthatusenewdatasourcesalsocontributestoimproveddataavailability.Manynationalstatisticaloffices(NSOs)arealreadyexperimentingwithusingbigdataintheproductionofofficialstatistics.Currently,thedominantbigdatatypesincludeEarthObservation(EO)data,citizensciencedataandothersensornetworkdata,combinedwithadvancedanalyticaltechniques(e.g.machinelearning,geospatialmodellingandgeostatisticalmodelling).

TheUnitedNationsEnvironmentProgramme’s(UNEP)Measuring

Progressseriesofreportsprovidesanoverviewoftheprogress

madeindataavailabilityforthe92environment-relatedSustainable

DevelopmentGoal(SDG)indicators,coupledwithimprovement

ordegradationinthetrendofeachindicator.Italsoexplores

thepotentialandlimitationsofusingstatisticalanalysisto

demonstrateinterlinkagesbetweenindicatorpairstobetterinform

policymakersofthesynergiesandtrade-offsbetweenSDGs.

Theindicatorsaredividedintofourcategories:(i)stateofthe

environment,(ii)driversofchange,(iii)stateofhumanwell-being

and(iv)socioeconomicandenvironmentalfactors.Thisreport

explorestheuseofmultivariatestatisticalanalysisusingwater-

relatedecosystems(freshwaterandmarine)asanexampleofthe

utilityofthisapproachtoexplorehowecosystemsareimpactedby

drivers,pressuresandactionsatmultiplescales.

Substantialimprovementinglobaldataavailability

Globalanalysisoftheprogressofthe92environment-related

SDGindicatorsdemonstratesanimprovementindataavailability,

resultingfromadditionaldatabeingreportedbycountriesleading

totheavailabilityofsufficientdatatoaggregateatregionaland

globallevels.In2022,theenvironment-relatedSDGindicatorswith

sufficientdatatoanalysewereestimatedat59percent,upfrom

42percentin2020and34percentin2018.Indicatorswithmore

dataavailablearemostlyfoundinSDG6onfreshwater,SDG7on

energy,SDG12onsustainableconsumptionandproduction,SDG

13onclimatechange,SDG14onlifebelowwaterandSDG15on

lifeonland,withthemostimprovementindataavailabilityreported

intheLatinAmericaandCaribbean,NorthernAfrica,andEurope

regions.

41%

21%

38%

51%

12%

37%

51%

17%

32%

55%

13%

32%

55%

14%

30%

55%

16%

28%

59%

16%

25%

50%

22%

28%

45%

16%

39%

80

60

40

20

Measuringprogress:Water-relatedecosystemsandtheSDGs

FigureES.2Environment-relatedSDGindicatorsdatatrend,

globallevel

Global

38%

41%

21%

Nodataorinsufficientdata

LittlechangeorPositivetrend

anegativetrend

Statusofenvironment-relatedSDGindicators

In2022,atthegloballevel38percentofthe92environment-relatedindicatorsshowedpositivechange,indicatingenvironmentalimprovement,and21percentshowedlittleornegativechange.ThemostindicatorsshowingpositivetrendswerethoserelatedtoSDG9oninfrastructure,SDG7onenergyandSDG6onfreshwater.

TheregionswiththehighestproportionofSDGenvironment-relatedindicatorsshowingenvironmentalimprovementaretheLatinAmericaandtheCaribbeanregion(39percent)andtheCentralandSouthernAsiasubregion(38percent).Theregionswiththelowestproportionofindicatorsshowingenvironmental

4

FigureES.3Environment-relatedSDGindicatorsdatatrend,

globalandregionallevels

54%

21%

25%

0

LatinGlobalCentralSub-WesternNorthernEasternEuropeOceaniaNorthern

America

andthe

andSaharanAsia

SouthernAfrica

Africaand

SEAsia

Caribbean

Asia

America

Positivetrend

Nodataorinsufficientdata

Littlechangeoranegativetrend

degradationareCentralandSouthernAsia(12percent),WesternAsia(13percent)andNorthernAfrica(14percent).

Whilemeasuringtheprogressofthe92environment-relatedSDGindicatorsfocusesonevaluatingtrends,itdoesnotassessthemagnitudeofthetrendsorprogresstowardsmeetingtargetsassociatedwithspecificindicators.

Advancingstatisticalmethodsforidentifying

interlinkages

Thisreportadvancesthestatisticalmethodstobetterassess

andunderstandtheinterlinkagesbetweenpairsofindicators

throughtheuseofmultivariatestatisticalanalysis.This

buildsonthemethodsusedinthepreviousreport,Measuring

Progress:EnvironmentandtheSDGs,whichexploredtheuseof

correlationanalysistoidentifytheinterlinkagesbetweenpairsof

indicators.Basedonthedriver-pressure-state-impact-response(DPSIR)framework,theanalysisidentifieshowonestateoftheenvironmentindicatorisrelatestoindicatorsofamultitudeofdriversofchangeaswellassocioeconomicandenvironmentalfactors.Thestatisticalanalysisfocusesonfreshwater-andmarine-relatedecosystemsandisconductedattheglobal,national(ColombiaandMongolia)andbasin(Poyangbasin,China)levels.

Globalpolicydiscussionsbenefitfromnewanalyticalapproachestounderstandingtheunderlyinginterlinkagesanddriversofindicatortrends.Theanalyticalapproachusedhasthepotentialtocontributetoamorepolicy-relevantintegratedanalysis.Theanalysisconfirmedmanyknowninterlinkagesbetweenfreshwater-andmarine-relatedecosystemsandvariabledrivers.Italsoidentifiedseveralnewinterlinkagesthatcannotbeeasilyexplainedwiththeexistingliterature,requiringfurtherinvestigationtoidentifywhetherthesearecovariatesornewlyidentifieddrivers.Considerationofthesenewdriversmaybehighlyrelevanttothedevelopmentofnewinnovativepoliciestoprotecttheseecosystems.

Evaluatingindicatorsatthenationallevelprovidesamorecomprehensiveandactionableinterpretationofkeyinterlinkages

thanatthegloballevel,butglobal-leveltrendsremaincriticaltoassessingoverallprogressinachievingtheSDGs.Auniqueaspectoftheanalysisistheinclusionofbothglobal-levelandnational-levelinterlinkages.Whilesomeinterlinkagesweredetectedatbothscales,otherswereonlyidentifiedatthemoregranularnationalscale.Thevariouspositiveandnegativerelationshipsidentifiedbetweenthestateoftheecosystem,directdriversofchange,stateofhumanwell-being,andsocioeconomicandenvironmentalfactorshighlighttheimportanceofconsideringtheimpactofindirectlyrelatedfactors.Whilesomeimpactingfactorsarecommoninglobalandnationalsettings,identifyingothernationalfactorsconsideredtohavesynergiesortrade-offswithwater-

relatedecosystemsisimperativetoinformthedevelopmentoftargetedpoliciesandinterventionstoprotecttheseecosystems.

Findingsforfreshwater-andmarine-related

ecosystems

Theanalysisidentifiedstronginterlinkagesrelatedtopoliciesthatintegratelandandwaterconservation,ensuresuitablewaterinfrastructureinurbanareas,providemitigationofpollutionandaddressimpactsfromwaterwithdrawalsassociatedwitheconomicactivity.Theanalysisrevealedmostlyexamplesofrelationshipsconsistentwithpublishedevidenceandintuition.Forexample,populationlivinginurbanareaswasfoundtobepositivelyinterlinkedtoadeclineinmarine-relatedecosystemindicators,confirmingtheimpactofeffluentsfromlargecitiesontheeutrophicationofcoastalareas.

Theinclusionofglobalandnationallevelsinthestatisticalanalysisprovidedanopportunitytoverifyglobalinterlinkages

withnationalcasestudiesandhighlighttheimpactofdatadisaggregation.Forinstance,conservationeffortswereconsistentlypositivelyinterlinkedwithfreshwater-relatedecosystemindicatorsatbothlevels,whilewater-useefficiencyindicatorswereinterlinkedwithfreshwater-relatedecosystemsonlyatthenationallevel.

Recommendations

Theanalyticalapproachhasexposedsomeofthecriticaldatagapsinwater-relatedecosystemsandhaschallengedthesuitabilityofsomeindicatorstodetectmeaningfulchange

inthehealthoffreshwater-andmarine-relatedecosystems.Thefreshwater-relatedecosystemassessmentwaslimitedtointerlinkagesbetweenvariousmetricsoftheareaoffreshwater

5

Measuringprogress:Water-relatedecosystemsandtheSDGs

ineachcountry.Similarly,thelackofdisaggregatedcatchment-leveldataconstrainedtheabilitytomeaningfullyassesscoastalecosystems.Whilethesedatasetsbenefitfromtheabilitytoprovideconsistentmeasurementusingremotesensingacrosstheglobe,theyarelimitedintheirabilitytomeasurethewaterquality,volumesorecosystemhealthofwaterbodies.Theremaybeopportunitiestofurtherutilizecitizenscience,satelliteimagery,low-costinsitumonitoringandbigdatatoproducemeasuresofwaterqualityand/orvolumewithinvariouswaterbodies.

ItiscriticalthatthesuccessesoftheSDGindicatorframeworkbetranslatedintodisaggregateddatacapableofinformingsubnationalpolicieswhilemaintainingcompatibilityataglobalscale.Dataandindicatorsarekeyforinformeddecision-makingandpolicydesigntoknowhowrealisticoptionsare,whatinconsistenciesmightresultfromdecisions,howthecostofsuchinconsistenciescanbemitigatedandhowtrade-offscanbeexplained.Consideringthatmostenvironmentalpolicies,includingwaterpolicies,aredevelopedatthenationalorsubnationalscale,disaggregateddataisneededtoinformpolicy.

Re-evaluatingthesuitabilityofthecurrentindicatormethodologiestoparsetruechangeintheenvironmentfromdataandmethodologicalartefactsisneededtobolsterdatacollectionforotherenvironment-relatedindicators.Moreover,theanalysisrevealedtheimportanceofincorporatingmoreecologically

relevantspatialgroupings.Catchment-basedorecosystem-basedaggregationsmayprovidemoreinsightintotheecologicaldimensionofmanyoftheinterlinkagesidentifiedforfresh

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論