


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Monday,September07,2015
ThoughtsonKDD2015
LastmonthIattendedKDD2015inbeautifulSydney,Australia.Forthosewhodon'tknow,KDDisthe internationalconferenceforappliedmachinelearning&datamining,andisoftenthevenueforsomeofthemostinterestingdata ysisresearchprojects.
DespiteconcernsthatKDD2015wouldbealetdownafterKDD2014wassuchagreatsuccessinNewYorkCity,overallKDD2015wasafantasticconference,withanexcellentlineupofinvitedspeakersandplentyofinterestingpapers.CongratulationsalsotomyPhDadvisorThorstenJoachims,whonotonlydidagreatjobasPCCo-Chair,butalsowastherecipientofaTestofTimeAwardforhisworkonOptimizingSearchEnginesusingClickthroughData.
DataScienceforScience
OneofthebiggestthemesatKDD2015wasapplyingdatasciencetosupportthesciences,whichissomethingthat'sbeenonmymindalotrecently.HughDurrant-Whitegaveagreatkeynoteonapplyingmachinelearningtodiscoveryprocessesingeologyandecology.Onethingthatjumpedoutofhistalkwashowchallengingitistodevelopmodelsthatareinterpretableto experts.Thisissueisamelioratedinhissettingsbecausehelargelyfocusedonspatialmodelswhichareeasiertovisualizeandinterpret.
SusanAtheygaveanotherkeynoteontheinterybetweenmachinelearningandcausalinferenceinevaluation,whichisanimportantissueforthesciencesaswell.Imustadmit,mostofthetalkwentovermyhead,buttherewassomeinterestingdebateafterthetalkaboutwhethercausalityshouldbethegoalorratherjustmore"robust"correlations(whateverthatmightmean).
IalsoreallyenjoyedtheData-DrivenSciencePanel,wherethedebategotquiteheatedattimes.Twoissuesinparticularstoodout.First,whatshouldbetheroleofmachinelearninganddataminingexpertsintheecosystemofdata-drivenscience?Onetheonehand,computerscientistshavehistoricallyhadalargeimpactbydevelosystemsandtformsthat awaylow-levelcomplexityandempowerusertobemoreproductive.However,howtoachievesuchasolutioninadata-richworldisamuessier(oratleastdifferent)typeofendeavor.Thereare,ofcourse,plentyofstartupsthataddressaspectsofthisproblem,butagenuinescalablesolutionforscienceremainselusive.
Asecondissuethatwasraisedwaswhethercomputationalresearchershavemademuchofadirectimpactonthesciences.Theparticulararea,raisedbyTinaEliassi-Rad,isthesocialsciences.Machinelearninganddatamininghavetakengreatinterestincomputationalsocialscienceviastudyinglargesocialnetworks.However,itisnotcleartowhatextentcomputationalresearchershavedirectlymadeanimpacttotraditionalsocialsciencefields.Ofcourse,thisissueistiedbacktowhattheroleofcomputationalresearchersshouldbe.Ontheonehand,manysocialscientistsdousetoolsmadebycomputationalpeople,sotheindirectimpactisquiteclear.Doesitreallymatterthattherehasn'tbeenmuchdirectimpact?
UpdateonMOOCs
DaphneKollergaveagreatkeynoteonthestateofMOOCsandCourserainparticular.ItseemsthatMOOCsnowadaysaremuchsmarterabouttheirconsumerbase,andhavediversifiedthewaytheydelivercontentandmeasuresuccessforawiderangeofstudents.Forexample,peoplenowunderstandmuchbetterthedifferentneedsofcollegeaspirants(whouseMOOCstosupplicanthighschool&collegeeducation)versusyoungprofessionals(whouseMOOCstogetaheadintheircareers)versusthoseseekingvocationalskills(whichisverypopularinlessdevelopedcountries).
OnestrikingomissionthatwaspointedoutduringtheQ&AwasthatMOOCshavemostlyabandonedthepre-collegedemographic,especiallybeforehighschool.Inretrospect,thisisnottoosurprising,inlargepartduetotheverydifferentrequirementsforprimaryandsecondaryeducationacrossdifferentstatesandschooldistricts.ButitdoesputadamperonthecurrentMOOCenthusiasm,sincemanyproblemswitheducationstartmuchearlierthancollege.
LessonsLearnedfromLarge-ScaleA/BTesting
RonKohavigaveakeynoteonlessonslearnedfromonlineA/Btesting.Themostinterestingaspectofhistalkwasjusthowwell-tunedtheexistingsystemsare.Onesymptomofahighlytunedsystemisthatit esverydifficulttointuitaboutwhethercertainmodificationswillincreaseordecreasetheperformanceofthesystem(orhavenoeffect).Forexample,hegavetheaudienceanumberofquestionstotheaudience,suchas:"Doesincreasingthedescriptionofthesponsoredadvertisementsleadtoincreasedoverallclicksonads?"Basically,theaudiencecouldnotguessbetterthanrandom.Sothemainlessonistobasicallytofollowthedataanddon'tbeto(emotionally)tiedtoyourownintuitionswhenitcomestooptimizinglargecomplexindustrialsystems.
Sports yticsWorkshop
Ico-organizedthe2ndworkshoponLarge-ScaleSportsytics.ItriedtogetmoreeSportsintotheworkshopthisyear,butalasfellabitshort.ThorstendidgiveaninterestingtalkthatusedeSportsdata,althoughthephenomenonhewasstudyingwasnotspecifictoeSports.Inmanyways,eSportsisanevenbettertestbedforsportsyticsthantraditionalsportsbecausegamereystrack
li llyeverything.
Withinthemoretraditionalsportsregimes,it'sclearth cesstodataremainsalargebottleneck.Manyprofessionalleaguesarehoardingtheirdatalikegold,butsadlydonothavetheexpertiseleveragethedataeffectively.ThesituationactuallyseemsbetterinEurope,whereaccesstotrackedsoccer(sorry,futbol)gamesarerelativelycommon.IntheUS,itseemslikethedataisonlyavailabletoaselectfewsportsyticscompaniessuchasSecondSpectrum.I'mhopefulthatthissituationwillchangeinthenearfutureasthevariousstakeholders emorecomfortablewiththeideathatit'snottherawdatathathasvalue,buttheprocessedartifactsbuiltontopofthatdata.
InterestingPapers
TherewereplentyofinterestingresearchpapersatKDD,ofwhichI'lljustlistafewthatIparticularlyliked.
ADecisionTreeFrameworkforSpatiotemporalSequencePrediction
byTaehwanKim,YisongYue,SarahTaylor,andIainMatthews
I'llstartwithashamelesspieceofself-advertising.IncollaborationwithDisneyResearch,wetrainedamodeltogeneratevisualspeech,i.e.,animatethelowerfaceinresponsetoaudioorphoneticinputs.Seethedemobelow:
Moredetailshere.
InsideJokes:IdentifyingHumorousCartoonCaptions
byDafnaShahaf,EricHorvitz,andRobertMankoff
ProbablythemostinterestingapplicationatKDDwasonstudyingtheanatomyofajoke.Whiletheresultsmaynotseemtoosurprisinginretrospect(e.g.,thepunchlineshouldbeatofthejoke),whatwasreallycoolwasthatthemodelcouldfyifonejokewasfunnierthananotherjoke(i.e.,rankjokes).
CinemaDataMining:TheSmellofFear
byJ?rgWicker,NicolasKrauter,BettinaDerstorff,ChristofSt?nner,EfstratiosBourtsoukidis,ThomasKlüpfel,JonathanWilliams,andStefanKramer
Thiswasacoolpaperthatstudiedhowtheexhaledorganicparticlesvaryinresponsetodifferentemotions.Theauthorsinstrumentedamovietheater'saircirculationsystemwithchemicalsensors,andfoundthatthechemicalsyouexhaleareindicativeofvariousemotionssuchasfearoramusement.Theauthorrepeatedlylamentedthefactthattheydidn'tdothisforanyeroticfi,andsotheydon'tknowwhatthecinematicchemicalsignatureofarousalwouldlooklike.
WhosupportedObamain2012?Ecologicalinferencethroughdistributionregression
bySethFlaxman,Yu-XiangWang,andAlexSmola
Thispaperpresentsanewsolutiontotheecologicalinferenceproblemofinferringindividuallevelpreferencesfromaggregatedata.Theprimarydatatestbedwerecounty-wiseelection esanddemographicdatathatreportedatadifferentgranularityoroverlay.Themainissueishowtoestimate,e.g.,femalepreferenceforoneialcandidate,usingjustthesekindsofaggregatedata.
Certifyingandremovingdisparateimpact
byMichaelFeldman,SorelleFriedler,JohnMoeller,CarlosScheidegger,andSureshVenkatasubramanian
Manypeopleassumethat,becausealgorithmsare"objective"thentheycan'tbebiasedordiscriminatory.Thisassumptionisinvalidbecausethedataorfeaturesthemselvescanbebiased(cf.thisinterviewwithCynthiaDwork).Theauthorsofthispaperproposeawaytodetect&removebiasinmachinelearningmodelsthatistailoredtotheUSlegaldefinitionofbias.Theworkis,ofcourse,preliminary,butthispaperwasarguablythemostthoughtprovokingoftheentireconference.
Edge-WeightedalizedPageRank:BreakingADecade-OldPerformanceBarrier
byWenleiXie,DavidBindel,AlanDemers,andJohannesGehrke
Thispaperproposesareductionapproachto alizedPageRankthatyieldsacomputationalboostbyseveralordersofmagnitude,thusallowing,forthefirsttime, alizePageRanktobecomputedatinctivespeeds.Thispaperwasalsotherecipientofthebestpaperaward.
PostedbyYisongYueat3:48PM
Labels:computerscience,machinelearning,science/technology
2comments:
BrendanO'Connorsaid...
whethercomputationalresearchershavemademuchofadirectimpactonthesciences--it'sagoodpointthatonlyasmallamountofcomputationalworkonostensiblesocialtopics
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 注會財(cái)務(wù)法律實(shí)務(wù)試題及答案
- 深度研究注冊會計(jì)師考試學(xué)習(xí)資源的共享與利用的最佳實(shí)踐試題及答案
- 2025年高考生物考前必記知識點(diǎn)之必修三69個必考考點(diǎn)知識復(fù)習(xí)匯編
- 課題申報(bào)書 單位條件
- 元素化學(xué)習(xí)復(fù)習(xí)2025年注冊會計(jì)師考試的有效性分析試題及答案
- 財(cái)務(wù)合并報(bào)表難點(diǎn)試題及答案2025
- 項(xiàng)目管理學(xué)術(shù)方法試題及答案
- 注冊會計(jì)師各科目的復(fù)習(xí)特性試題及答案
- 課題申報(bào)書教師意見
- 項(xiàng)目績效考核指標(biāo)的選擇與應(yīng)用試題及答案
- 中國綠色資本市場綠皮書(2023-2024)
- 加油站施工施工組織設(shè)計(jì)方案
- 應(yīng)急停水停電培訓(xùn)資料
- 傳染病防治知識和技能培訓(xùn)計(jì)劃
- 《EPS處理表面氧化鐵皮技術(shù)要求 》
- MCN機(jī)構(gòu)運(yùn)營流程優(yōu)化與管理方案
- 【MOOC】書法鑒賞-浙江傳媒學(xué)院 中國大學(xué)慕課MOOC答案
- 足球場運(yùn)動草坪全年養(yǎng)護(hù)計(jì)劃
- (高清版)DBJ52∕T 017-2014 回彈法檢測山砂混凝土抗壓強(qiáng)度技術(shù)規(guī)程
- 現(xiàn)代化背景下企業(yè)檔案管理創(chuàng)新路徑
- 《幼兒教育政策與法規(guī)》課件-單元4 幼兒園的保育和教育
評論
0/150
提交評論