西格瑪統(tǒng)計(jì)學(xué)()課件_第1頁(yè)
西格瑪統(tǒng)計(jì)學(xué)()課件_第2頁(yè)
西格瑪統(tǒng)計(jì)學(xué)()課件_第3頁(yè)
西格瑪統(tǒng)計(jì)學(xué)()課件_第4頁(yè)
西格瑪統(tǒng)計(jì)學(xué)()課件_第5頁(yè)
已閱讀5頁(yè),還剩291頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1武漢工程職業(yè)技術(shù)學(xué)院培訓(xùn)中心劉美Tel:86804651Mobile_mail:50421330@統(tǒng)計(jì)基礎(chǔ)1武漢工程職業(yè)技術(shù)學(xué)院培訓(xùn)中心劉美統(tǒng)計(jì)基礎(chǔ)2武漢工程職業(yè)技術(shù)學(xué)院一、基本概念二、描述性統(tǒng)計(jì)三、數(shù)據(jù)的圖示方法四、統(tǒng)計(jì)量與抽樣分布五、數(shù)據(jù)的收集與整理六、參數(shù)估計(jì)主要內(nèi)容2武漢工程職業(yè)技術(shù)學(xué)院一、基本概念主要內(nèi)容3武漢工程職業(yè)技術(shù)學(xué)院一、基本概念(一)基本概念1、統(tǒng)計(jì)學(xué)(statistics):收集、處理、分析、解釋數(shù)據(jù)并從中得出結(jié)論的科學(xué)。2、描述統(tǒng)計(jì)(descriptivestatistics):研究數(shù)據(jù)收集、處理和描述的統(tǒng)計(jì)學(xué)分支。3、推斷統(tǒng)計(jì)(inferentialstatistics):研究如何用樣本數(shù)據(jù)來(lái)推斷總體特征的統(tǒng)計(jì)學(xué)分支。4、總體(population):包含所研究的全部個(gè)體(數(shù)據(jù))的集合,稱(chēng)為總體。根據(jù)所包含的單位數(shù)目是否可數(shù)可以分為有限總體和無(wú)限總體,區(qū)分有限總體和無(wú)限總體的目的是判別每次抽樣是否獨(dú)立3武漢工程職業(yè)技術(shù)學(xué)院一、基本概念(一)基本概念4武漢工程職業(yè)技術(shù)學(xué)院5、樣本(sample):從總體中抽取的一部分元素的集合稱(chēng)為樣本。6、樣本量(samplesize):構(gòu)成樣本的元素的數(shù)目稱(chēng)為樣本量或樣本容量。7、參數(shù)(parameter):用來(lái)描述總體特征的概括性數(shù)字度量稱(chēng)為參數(shù)。參數(shù)包括均值、標(biāo)準(zhǔn)差、比例等。一般用希臘字母表示。8、統(tǒng)計(jì)量(statistics):用來(lái)描述樣本特征的概括性數(shù)字度量稱(chēng)為統(tǒng)計(jì)量。通常用英文字母表示。一、基本概念4武漢工程職業(yè)技術(shù)學(xué)院一、基本概念5武漢工程職業(yè)技術(shù)學(xué)院

二、描述性統(tǒng)計(jì)5武漢工程職業(yè)技術(shù)學(xué)院

二、描述性統(tǒng)計(jì)6武漢工程職業(yè)技術(shù)學(xué)院二、描述性統(tǒng)計(jì)例題:13.計(jì)算下列數(shù)據(jù)的中位值:23,33,35,45,55,56,66,78a.50b.45c.55d.40(4)眾數(shù)、中位數(shù)、均值三者之間的關(guān)系眾數(shù)是一組數(shù)據(jù)分布的峰值,不受極端值的影響,但缺點(diǎn)是有可能不唯一,適合于分類(lèi)數(shù)據(jù)的集中趨勢(shì)測(cè)度值;中位數(shù)是一組數(shù)據(jù)中間位置上的代表值,在數(shù)據(jù)分布偏斜程度較大時(shí)適合作為數(shù)值型數(shù)據(jù)集中趨勢(shì)的測(cè)度值;均值利用了數(shù)據(jù)的全部信息,當(dāng)數(shù)據(jù)對(duì)稱(chēng)或接近對(duì)稱(chēng)時(shí),應(yīng)選擇均值作為集中趨勢(shì)的代表值。6武漢工程職業(yè)技術(shù)學(xué)院二、描述性統(tǒng)計(jì)例題:13.計(jì)算下列數(shù)7武漢工程職業(yè)技術(shù)學(xué)院(5)眾數(shù)、中位數(shù)、均值三者之間的關(guān)系二、描述性統(tǒng)計(jì)對(duì)稱(chēng)分布:均值=中位數(shù)=眾數(shù)右偏分布:均值>中位數(shù)>眾數(shù)左偏分布:均值<中位數(shù)<眾數(shù)7武漢工程職業(yè)技術(shù)學(xué)院(5)眾數(shù)、中位數(shù)、均值三者之間的關(guān)系8武漢工程職業(yè)技術(shù)學(xué)院例題:一個(gè)真正的正態(tài)分布,中值,均值和眾數(shù)之間的關(guān)系應(yīng)該是:a.?dāng)?shù)值相同b.均值和眾數(shù)相同,而中值不同c.每一個(gè)數(shù)值都和其他兩個(gè)不同d.均值和中值相同,而眾數(shù)不同二、描述性統(tǒng)計(jì)8武漢工程職業(yè)技術(shù)學(xué)院例題:一個(gè)真正的正態(tài)分布,中值,均值和9武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年考試樣題)

28.下表是一個(gè)分組樣本則其樣本均值X近似為:A.50B.54C.62D.64分組區(qū)間(35,45](45,55](55,65](65,75]頻數(shù)3872二、描述性統(tǒng)計(jì)9武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年考試樣題)分組區(qū)間10武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年考試樣題)

44.一批數(shù)據(jù)的描述性統(tǒng)計(jì)量計(jì)算結(jié)果顯示,均值和中位數(shù)都是100。這時(shí),在一般情況下可以得到的結(jié)論是:A.此分布為對(duì)稱(chēng)分布B.此分布為正態(tài)分布C.此分布為均勻分布D.以上各結(jié)論都不能肯定二、描述性統(tǒng)計(jì)10武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年考試樣題)二、描11武漢工程職業(yè)技術(shù)學(xué)院2、描述波動(dòng)情況(離散程度)的度量(1)樣本標(biāo)準(zhǔn)差:樣本方差的平方根,量綱與變量值相同。(2)樣本方差:各變量與其平均值離差平方和的平均數(shù)(3)極差:一組數(shù)據(jù)的最大值與最小值之差二、描述性統(tǒng)計(jì)11武漢工程職業(yè)技術(shù)學(xué)院2、描述波動(dòng)情況(離散程度)的度量二12武漢工程職業(yè)技術(shù)學(xué)院2、離散程度的度量(4)四分位間距IRQ=Q3-Q1標(biāo)準(zhǔn)差最常用,對(duì)離散狀況有較好的代表性,與樣本量關(guān)系不密切,但缺點(diǎn)是對(duì)異常值敏感;極差與樣本量關(guān)系密切,對(duì)異常值敏感,但計(jì)算簡(jiǎn)單;四分位間距與樣本量關(guān)系不密切,對(duì)異常值不敏感,是所有離散狀況度量的統(tǒng)計(jì)量中最穩(wěn)健的。二、描述性統(tǒng)計(jì)12武漢工程職業(yè)技術(shù)學(xué)院2、離散程度的度量二、描述性統(tǒng)計(jì)13武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年考試樣題)26.容易看到,在一個(gè)城市中不同收入者的住房面積相差懸殊,分布一般會(huì)呈現(xiàn)出嚴(yán)重的右偏傾向。為了調(diào)查S市的住房狀況,隨機(jī)抽取了1000個(gè)住戶(hù),測(cè)量了他們的住房面積。在這種情況下,代表一般住房狀況的最有代表性的指標(biāo)應(yīng)該是:A.樣本平均值(Mean)B.去掉一個(gè)最高值,去掉一個(gè)最低值,然后求平均C.樣本眾數(shù)(Mode),即樣本分布中概率最高者。D.樣本中位數(shù)(Median)二、描述性統(tǒng)計(jì)13武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年考試樣題)二、描14武漢工程職業(yè)技術(shù)學(xué)院例題:

33.近幾年來(lái)居民之間收入的差距越來(lái)越大,為了解A市B區(qū)居民年收入狀況,在公安部門(mén)戶(hù)口冊(cè)的記錄中隨機(jī)抽取了1.2萬(wàn)戶(hù)居民,記錄了他們?cè)?008年的居民年收入數(shù)額,下列哪個(gè)統(tǒng)計(jì)量用于描述該地區(qū)居民年收入的差距狀況,且受異常值影響最???A.樣本中位數(shù)B.樣本極差C.樣本四分位間距D.樣本標(biāo)準(zhǔn)差二、描述性統(tǒng)計(jì)14武漢工程職業(yè)技術(shù)學(xué)院例題:二、描述性統(tǒng)計(jì)15武漢工程職業(yè)技術(shù)學(xué)院3、偏態(tài)與峰態(tài)的度量(樣本數(shù)據(jù))(1)偏態(tài)系數(shù)(偏度):數(shù)據(jù)分布不對(duì)稱(chēng)性的度量值正偏(右偏)偏態(tài)系數(shù)為正,負(fù)偏(左偏)偏態(tài)系數(shù)為負(fù)(2)峰態(tài)系數(shù)(峰度):對(duì)數(shù)據(jù)分布峰態(tài)的度量值。二、描述性統(tǒng)計(jì)15武漢工程職業(yè)技術(shù)學(xué)院3、偏態(tài)與峰態(tài)的度量(樣本數(shù)據(jù))二、16武漢工程職業(yè)技術(shù)學(xué)院1、三種不同性質(zhì)的分布(1)總體分布:總體中各元素的觀測(cè)值所形成的相對(duì)頻數(shù)分布稱(chēng)為總體分布。(2)樣本分布:從總體中抽取一個(gè)容量為n的樣本,由這n個(gè)觀測(cè)值形成的相對(duì)頻數(shù)分布,稱(chēng)為樣本分布。(3)抽樣分布:某個(gè)樣本統(tǒng)計(jì)量的抽樣分布,從理論上說(shuō)就是在重復(fù)選取容量為n的樣本時(shí),由該統(tǒng)計(jì)量的所有可能取值形成的相對(duì)頻數(shù)分布。四、統(tǒng)計(jì)量與抽樣分布16武漢工程職業(yè)技術(shù)學(xué)院1、三種不同性質(zhì)的分布四、統(tǒng)計(jì)量與抽17武漢工程職業(yè)技術(shù)學(xué)院2、抽樣分布的概念樣本1樣本2樣本n新總體n

統(tǒng)計(jì)量原總體抽樣分布示例三、統(tǒng)計(jì)量與抽樣分布17武漢工程職業(yè)技術(shù)學(xué)院2、抽樣分布的概念樣本1樣本2樣本n18武漢工程職業(yè)技術(shù)學(xué)院3、樣本均值的抽樣分布定義:在重復(fù)選取容量為n的樣本時(shí),由樣本均值的所有可能取值形成的相對(duì)頻數(shù)分布稱(chēng)為樣本均值的抽樣分布。(1)總體服從正態(tài)分布時(shí),樣本均值服從正態(tài)分布,轉(zhuǎn)換為標(biāo)準(zhǔn)正態(tài)分布,則:當(dāng)總體標(biāo)準(zhǔn)差σ已知,樣本均值進(jìn)行標(biāo)準(zhǔn)化轉(zhuǎn)換后,可以得到標(biāo)準(zhǔn)正態(tài)分布。三、統(tǒng)計(jì)量與抽樣分布18武漢工程職業(yè)技術(shù)學(xué)院3、樣本均值的抽樣分布(1)總體服從19武漢工程職業(yè)技術(shù)學(xué)院(2)當(dāng)總體標(biāo)準(zhǔn)差未知,用樣本標(biāo)準(zhǔn)差S代替總體標(biāo)準(zhǔn)差,樣本均值的抽樣分布服從自由度為n-1的t分布。即:由于總體標(biāo)準(zhǔn)差σ常常是未知的,因此t統(tǒng)計(jì)量常被用來(lái)進(jìn)行有關(guān)單個(gè)正態(tài)總體均值和兩個(gè)正態(tài)總體均值之差等問(wèn)題的參數(shù)估計(jì)和假設(shè)檢驗(yàn)。三、統(tǒng)計(jì)量與抽樣分布19武漢工程職業(yè)技術(shù)學(xué)院(2)當(dāng)總體標(biāo)準(zhǔn)差未知,用樣本標(biāo)準(zhǔn)差20武漢工程職業(yè)技術(shù)學(xué)院三、統(tǒng)計(jì)量與抽樣分布20武漢工程職業(yè)技術(shù)學(xué)院三、統(tǒng)計(jì)量與抽樣分布21武漢工程職業(yè)技術(shù)學(xué)院4、正態(tài)樣本方差的S2的分布——卡方分布三、統(tǒng)計(jì)量與抽樣分布21武漢工程職業(yè)技術(shù)學(xué)院4、正態(tài)樣本方差的S2的分布——卡方22武漢工程職業(yè)技術(shù)學(xué)院卡方分布的概率密度函數(shù)在正半軸上呈正偏分布。三、統(tǒng)計(jì)量與抽樣分布22武漢工程職業(yè)技術(shù)學(xué)院卡方分布的概率密度函數(shù)在正半軸上呈正23武漢工程職業(yè)技術(shù)學(xué)院卡方分布的性質(zhì):(1)卡方分布的變量值始終為正。(2)卡方分布的形狀取決于其自由度n的大小,通常為不對(duì)稱(chēng)的右偏分布,但隨著自由度的增大逐漸趨于對(duì)稱(chēng)。(3)卡方分布的可加性:設(shè)X和Y彼此獨(dú)立,且都服從卡方分布,其自由度分別為n1、n2,若令Z=X+Y,則Z服從自由度n1+n2的卡方分布。(4)若三、統(tǒng)計(jì)量與抽樣分布23武漢工程職業(yè)技術(shù)學(xué)院卡方分布的性質(zhì):三、統(tǒng)計(jì)量與抽樣分布24武漢工程職業(yè)技術(shù)學(xué)院5、兩個(gè)獨(dú)立的正態(tài)樣本方差之比的分布——F分布三、統(tǒng)計(jì)量與抽樣分布24武漢工程職業(yè)技術(shù)學(xué)院5、兩個(gè)獨(dú)立的正態(tài)樣本方差之比的分布25武漢工程職業(yè)技術(shù)學(xué)院三、統(tǒng)計(jì)量與抽樣分布25武漢工程職業(yè)技術(shù)學(xué)院三、統(tǒng)計(jì)量與抽樣分布26武漢工程職業(yè)技術(shù)學(xué)院(一)數(shù)據(jù)類(lèi)型與測(cè)量尺度1、數(shù)據(jù)的類(lèi)型分為連續(xù)型數(shù)據(jù)和離散型數(shù)據(jù)。連續(xù)性數(shù)據(jù)(也叫計(jì)量值數(shù)據(jù)),對(duì)測(cè)量手段要求較高(測(cè)量成本較高),但信息量比較豐富,可以比較敏感地反映過(guò)程的變化;離散型數(shù)據(jù)(也叫計(jì)數(shù)數(shù)據(jù)),在反映過(guò)程變化方面不如連續(xù)型數(shù)據(jù)敏感,往往需要較大的樣本量或較長(zhǎng)的測(cè)量周期才能得出結(jié)論。六西格瑪項(xiàng)目在收集數(shù)據(jù)時(shí),應(yīng)盡量采用連續(xù)型數(shù)據(jù)。2、測(cè)量尺度數(shù)據(jù)包含多少信息取決于測(cè)量所使用的尺度。測(cè)量的尺度決定了研究這些數(shù)據(jù)時(shí)應(yīng)使用什么類(lèi)型的統(tǒng)計(jì)分析方法。選定了相應(yīng)的測(cè)量尺度,便確定了所產(chǎn)生的數(shù)據(jù)類(lèi)型,也就確定了在項(xiàng)目實(shí)施過(guò)程中可使用的統(tǒng)計(jì)分析方法。四、數(shù)據(jù)的收集與整理26武漢工程職業(yè)技術(shù)學(xué)院(一)數(shù)據(jù)類(lèi)型與測(cè)量尺度四、數(shù)據(jù)的收27武漢工程職業(yè)技術(shù)學(xué)院測(cè)量尺度分為四類(lèi):定類(lèi)、定序、定距、定比(1)定類(lèi)(名義)測(cè)量尺度數(shù)據(jù)是數(shù)字形式的名義值。如0=白色,1=非白色。將事物分到唯一的類(lèi)中,這些類(lèi)必須是互斥的,而且是完備的。能識(shí)別的關(guān)系只有“=”和“≠”。(2)定序測(cè)量尺度定序變量對(duì)可能的取值進(jìn)行排序。如以“好”、“更好”、“極好”來(lái)劃分顧客對(duì)某種服務(wù)的偏好。對(duì)定序數(shù)據(jù)可以進(jìn)行“計(jì)數(shù)”和“排序”運(yùn)算,但不能進(jìn)行算術(shù)平均。四、數(shù)據(jù)的收集與整理27武漢工程職業(yè)技術(shù)學(xué)院測(cè)量尺度分為四類(lèi):定類(lèi)、定序、定距、28武漢工程職業(yè)技術(shù)學(xué)院

四、數(shù)據(jù)的收集與整理28武漢工程職業(yè)技術(shù)學(xué)院

四、數(shù)據(jù)的收集與整理29武漢工程職業(yè)技術(shù)學(xué)院(二)抽樣方法1、簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)元素的總體中,抽取n個(gè)元素作為樣本,使得總體中的每一個(gè)元素都有相同的機(jī)會(huì)(概率)被抽中,這樣的抽樣方法稱(chēng)為簡(jiǎn)單隨機(jī)抽樣。簡(jiǎn)單隨機(jī)抽樣要滿足兩個(gè)基本條件:等可能性和獨(dú)立性。常用的隨機(jī)抽樣方法:抽簽法、滾球法、計(jì)算機(jī)模擬、隨機(jī)數(shù)表法四、數(shù)據(jù)的收集與整理29武漢工程職業(yè)技術(shù)學(xué)院(二)抽樣方法四、數(shù)據(jù)的收集與整理30武漢工程職業(yè)技術(shù)學(xué)院四、數(shù)據(jù)的收集與整理2、分層抽樣在抽樣之前先將總體的元素劃分為若干層(類(lèi)),然后從各個(gè)層中抽取一定數(shù)量的元素組成一個(gè)樣本,這樣的抽樣方法稱(chēng)為分層抽樣,也稱(chēng)分類(lèi)抽樣。(1)比例分配法。(2)適度分配法。(3)經(jīng)濟(jì)分配法。

30武漢工程職業(yè)技術(shù)學(xué)院四、數(shù)據(jù)的收集與整理2、分層抽樣

31武漢工程職業(yè)技術(shù)學(xué)院3、系統(tǒng)抽樣先將總體各元素按某種順序排列,并按某種規(guī)則確定一個(gè)隨機(jī)起點(diǎn),然后每隔一定的間隔抽取一個(gè)元素,直至抽取n個(gè)元素形成一個(gè)樣本,這樣的抽樣方法稱(chēng)為系統(tǒng)抽樣,也稱(chēng)等距抽樣或機(jī)械抽樣。4、整群抽樣先將總體劃分成若干群,然后在以群為抽樣單位從中抽取部分群,在對(duì)抽中的各個(gè)群中所包含的所有元素進(jìn)行觀察,這樣的抽樣方法稱(chēng)為整群抽樣。四、數(shù)據(jù)的收集與整理31武漢工程職業(yè)技術(shù)學(xué)院3、系統(tǒng)抽樣四、數(shù)據(jù)的收集與整理32武漢工程職業(yè)技術(shù)學(xué)院1、直方圖常用于了解數(shù)據(jù)的分布情況,容易從圖形中看出數(shù)據(jù)的位置狀況、離散程度和分布狀況。直方圖步驟:從n個(gè)樣本數(shù)據(jù)中找出最大值和最小值,計(jì)算極差;對(duì)樣本進(jìn)行分組,決定組數(shù)k和組距d。k的取值范圍在7-15之間,d由極差R和組數(shù)k來(lái)確定,通常d=R/k;確定各組的區(qū)間端點(diǎn)a0。a0+d=a1,a1+d=a2,a2+d=a3…形成半開(kāi)半閉區(qū)間:[a0,a1),[a1,a2),[a2,a3)…計(jì)算樣本落在每個(gè)區(qū)間的頻數(shù)ni;繪制圖形。練習(xí):以“直方圖.MPJ”為例練習(xí)繪制直方圖。五、數(shù)據(jù)的圖示方法32武漢工程職業(yè)技術(shù)學(xué)院1、直方圖五、數(shù)據(jù)的圖示方法33武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法33武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法34武漢工程職業(yè)技術(shù)學(xué)院2、莖葉圖直方圖的變種,全部或部分地保留了原始數(shù)據(jù)的信息。例:對(duì)某型號(hào)的20輛汽車(chē)記錄了每加侖汽油各自行駛的里程數(shù),繪制莖葉圖。五、數(shù)據(jù)的圖示方法34武漢工程職業(yè)技術(shù)學(xué)院2、莖葉圖五、數(shù)據(jù)的圖示方法35武漢工程職業(yè)技術(shù)學(xué)院上四分位數(shù)3、數(shù)據(jù)箱線圖箱線圖由箱體、上下須觸線和星號(hào)三部分組成。*中位數(shù)下四分位數(shù)上限=min(Q3+1.5IRQ,最大值)下限=max(Q1-1.5IRQ,最小值)超過(guò)上限,用*表示*低于下限,用*表示五、數(shù)據(jù)的圖示方法35武漢工程職業(yè)技術(shù)學(xué)院上四分位數(shù)3、數(shù)據(jù)箱線圖*中位數(shù)下四36武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年樣題)53.在箱線圖(Box-Plot)分析中,已知最小值=-4;Q1=1;Q3=4;最大值=7;則正確的說(shuō)法是:A.上須觸線終點(diǎn)為:7;下須觸線終點(diǎn)為:-3.5B.上須觸線終點(diǎn)為:8.5;下須觸線終點(diǎn)為:-3.5C.上須觸線終點(diǎn)為:7;下須觸線終點(diǎn)為:-4D.上須觸線終點(diǎn)為:8.5;下須觸線終點(diǎn)為:-4五、數(shù)據(jù)的圖示方法36武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年樣題)五、數(shù)據(jù)的37武漢工程職業(yè)技術(shù)學(xué)院4、鏈圖也稱(chēng)趨勢(shì)圖。顯示任何測(cè)量特性隨時(shí)間變化的圖表。分析鏈圖的目的是為了確認(rèn)所出現(xiàn)的波動(dòng)模式是由普通因素引起的,還是有特殊因素引起的。鏈圖可用于任何按時(shí)間序列組織的、連續(xù)尺度測(cè)量的數(shù)據(jù)的圖形分析。繪制步驟:(1)依時(shí)間順序畫(huà)數(shù)據(jù)折線圖;(2)畫(huà)一條表示中位數(shù)的水平線?!读鞲瘳敼芾怼稰162五、數(shù)據(jù)的圖示方法37武漢工程職業(yè)技術(shù)學(xué)院4、鏈圖五、數(shù)據(jù)的圖示方法38武漢工程職業(yè)技術(shù)學(xué)院4、鏈圖可以用鏈圖判斷過(guò)程是否受到特殊因素的影響:(1)鏈的長(zhǎng)度:指位于中位數(shù)同一側(cè)的連續(xù)點(diǎn)數(shù)目(忽略落在中位數(shù)上的點(diǎn))。(2)鏈的數(shù)目:位于中位線同一側(cè)的連續(xù)的點(diǎn)的序列構(gòu)成一個(gè)鏈。(3)趨勢(shì):鏈圖中不應(yīng)該存在任何異常的連續(xù)上升和連續(xù)下降的序列。《六西格瑪管理》P162五、數(shù)據(jù)的圖示方法38武漢工程職業(yè)技術(shù)學(xué)院4、鏈圖五、數(shù)據(jù)的圖示方法39武漢工程職業(yè)技術(shù)學(xué)院5.餅圖餅圖在顯示屬性統(tǒng)計(jì)資料的場(chǎng)合中使用最多。圓形中的各個(gè)不同大小和顏色的扇形代表不同的屬性變量,它們的面積之和構(gòu)成了一個(gè)完整的圓形,即代表所有屬性變量的整體。這個(gè)特點(diǎn)非常適合體現(xiàn)某個(gè)整體的成分構(gòu)成和各成分之間的對(duì)比關(guān)系。制作餅圖時(shí),首先要畫(huà)一個(gè)圓,其次根據(jù)各屬性變量出現(xiàn)的頻數(shù)占總觀測(cè)值數(shù)n的比率,再計(jì)算出扇形度數(shù),然后以扇形度數(shù)為依據(jù)將圓周分割成一個(gè)個(gè)扇形,并添加不同的顏色和圖例加以區(qū)分,最終繪成簡(jiǎn)單易懂的餅圖。五、數(shù)據(jù)的圖示方法

39武漢工程職業(yè)技術(shù)學(xué)院5.餅圖五、數(shù)據(jù)的圖示方法

40武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法

6.3D散點(diǎn)圖散點(diǎn)圖是研究成對(duì)出現(xiàn)的兩組數(shù)據(jù)之間相關(guān)關(guān)系的簡(jiǎn)單圖示,它的實(shí)現(xiàn)方式相對(duì)比較容易,在此介紹更進(jìn)一步的3D散點(diǎn)圖,即可以研究三組數(shù)據(jù)之間相關(guān)關(guān)系的三維立體圖形。一個(gè)數(shù)據(jù)(X,Y,Z)就是三維空間中的一個(gè)點(diǎn),很多個(gè)數(shù)據(jù)就構(gòu)成了三維空間中的點(diǎn)集,觀察點(diǎn)集的分布狀態(tài)便可判別三組數(shù)據(jù)兩兩之間的相關(guān)程度,或是推斷其中兩組數(shù)據(jù)對(duì)另一組數(shù)據(jù)的影響程度。40武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法

6.3D散點(diǎn)圖41武漢工程職業(yè)技術(shù)學(xué)院7、正態(tài)概率圖正態(tài)坐標(biāo)紙橫坐標(biāo)等間隔,縱坐標(biāo)按標(biāo)準(zhǔn)正態(tài)分布的累積概率標(biāo)示。(《六西格瑪管理》)P164繪圖步驟:(1)樣本排序;(2)繪制直線:在第k個(gè)數(shù)據(jù)處用修正頻率去估計(jì),畫(huà)直線。(3)把n個(gè)點(diǎn)逐一畫(huà)在正態(tài)概率紙上;不同類(lèi)型數(shù)據(jù)的正態(tài)概率圖五、數(shù)據(jù)的圖示方法41武漢工程職業(yè)技術(shù)學(xué)院7、正態(tài)概率圖五、數(shù)據(jù)的圖示方法42武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法(4)目測(cè)判斷(生成數(shù)據(jù)檢驗(yàn))。若n個(gè)點(diǎn)近似在一直線上,則認(rèn)為該樣本來(lái)自某正態(tài)總體;若n個(gè)點(diǎn)明顯有上凸?fàn)?,則認(rèn)為該樣本呈右偏態(tài)分布;若n個(gè)點(diǎn)明顯有下凸?fàn)?,則認(rèn)為該樣本呈左偏態(tài)分布。42武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法(4)目測(cè)判斷(生43武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法8.時(shí)間序列圖時(shí)間序列圖是顯示觀察值隨時(shí)間變化而不斷變化的圖形。在自然界和社會(huì)領(lǐng)域,客觀現(xiàn)象發(fā)展變化的差異及其規(guī)律性可以通過(guò)時(shí)間變量反映時(shí),往往會(huì)借助時(shí)間序列圖來(lái)展現(xiàn)。時(shí)間序列圖有兩個(gè)基本要素:時(shí)間要素和觀察值要素。前者說(shuō)明客觀現(xiàn)象的觀察值所屬的時(shí)間類(lèi)型及其長(zhǎng)度,后者主要表明客觀現(xiàn)象在某一時(shí)間點(diǎn)上發(fā)展變化的結(jié)果和狀態(tài)。43武漢工程職業(yè)技術(shù)學(xué)院五、數(shù)據(jù)的圖示方法8.時(shí)間序列圖六、分析A階段是DMAIC中最難以遇見(jiàn)的階段。項(xiàng)目團(tuán)隊(duì)所使用的方法將在很大程度上取決于所涉及的問(wèn)題與數(shù)據(jù)的特點(diǎn)。在這個(gè)階段中,DMAIC團(tuán)隊(duì)?wèi)?yīng)該詳細(xì)研究資料,增強(qiáng)對(duì)過(guò)程和問(wèn)題的理解,進(jìn)而識(shí)別問(wèn)題的原因,使用各分析步驟尋找“問(wèn)題根源”。有許多調(diào)查缺陷原因的有力工具可以使用,有兩類(lèi)不同的分析方法可用于研究問(wèn)題的真正原因:(1)探索性數(shù)據(jù)分析。(2)過(guò)程分析。44武漢工程職業(yè)技術(shù)學(xué)院六、分析A階段是DMAIC中最難以遇見(jiàn)的階段。項(xiàng)45武漢工程職業(yè)技術(shù)學(xué)院所謂參數(shù)估計(jì),就是用樣本統(tǒng)計(jì)量去估計(jì)總體參數(shù)。定義1:用來(lái)估計(jì)總體參數(shù)的統(tǒng)計(jì)量的名稱(chēng),稱(chēng)為估計(jì)量,用符號(hào)表示。定義2:用來(lái)估計(jì)總體參數(shù)時(shí)計(jì)算出來(lái)的估計(jì)量的具體數(shù)值,稱(chēng)為估計(jì)值。六、參數(shù)估計(jì)45武漢工程職業(yè)技術(shù)學(xué)院所謂參數(shù)估計(jì),就是用樣本統(tǒng)計(jì)量去估計(jì)46武漢工程職業(yè)技術(shù)學(xué)院1、點(diǎn)估計(jì)六、參數(shù)估計(jì)點(diǎn)估計(jì)不能保證每次估計(jì)參數(shù)時(shí)都是無(wú)偏的,無(wú)法給出對(duì)于待估參數(shù)的估計(jì)的精度可可靠程度的度量。46武漢工程職業(yè)技術(shù)學(xué)院1、點(diǎn)估計(jì)六、參數(shù)估計(jì)點(diǎn)估計(jì)不能保證47武漢工程職業(yè)技術(shù)學(xué)院六、參數(shù)估計(jì)

N為奇數(shù)N為偶數(shù)

47武漢工程職業(yè)技術(shù)學(xué)院六、參數(shù)估計(jì)

N為奇數(shù)N為偶數(shù)

48武漢工程職業(yè)技術(shù)學(xué)院六、參數(shù)估計(jì)

48武漢工程職業(yè)技術(shù)學(xué)院六、參數(shù)估計(jì)

49武漢工程職業(yè)技術(shù)學(xué)院六、參數(shù)估計(jì)

49武漢工程職業(yè)技術(shù)學(xué)院六、參數(shù)估計(jì)

50武漢工程職業(yè)技術(shù)學(xué)院2、區(qū)間估計(jì)六、參數(shù)估計(jì)50武漢工程職業(yè)技術(shù)學(xué)院2、區(qū)間估計(jì)六、參數(shù)估計(jì)51武漢工程職業(yè)技術(shù)學(xué)院2、區(qū)間估計(jì)六、參數(shù)估計(jì)總體參數(shù)的估計(jì)區(qū)間通常是由樣本統(tǒng)計(jì)量加減抽樣誤差而得到的。進(jìn)行區(qū)間估計(jì)時(shí),根據(jù)樣本統(tǒng)計(jì)量的抽樣分布可以對(duì)樣本統(tǒng)計(jì)量與總體參數(shù)的接近程度給出一個(gè)概率度量。參數(shù)估計(jì)是已知樣本均值

推斷總體均值μ,由于

與μ的距離是對(duì)稱(chēng)的,如果某個(gè)樣本的平均值落在μ的2個(gè)標(biāo)準(zhǔn)差范圍內(nèi),反過(guò)來(lái)μ也被包括在

以為中心左右2個(gè)標(biāo)準(zhǔn)差范圍內(nèi)。也就是說(shuō),約有95%的樣本均值所構(gòu)造的2個(gè)標(biāo)準(zhǔn)差的區(qū)間會(huì)包括μ。51武漢工程職業(yè)技術(shù)學(xué)院2、區(qū)間估計(jì)六、參數(shù)估計(jì)總體參數(shù)的估52武漢工程職業(yè)技術(shù)學(xué)院區(qū)間估計(jì)68.27%的樣本95.45%的樣本99.73%的樣本六、參數(shù)估計(jì)52武漢工程職業(yè)技術(shù)學(xué)院區(qū)間估計(jì)68.27%的樣本95.4553武漢工程職業(yè)技術(shù)學(xué)院置信水平:如果將構(gòu)造置信區(qū)間的步驟重復(fù)多次,置信區(qū)間中包含總體參數(shù)真值的次數(shù)所占的比率,稱(chēng)為置信水平,或稱(chēng)為置信系數(shù)。在構(gòu)造置信區(qū)間時(shí),比較常用的置信水平為90%、95%、99%三種,分別對(duì)應(yīng)顯著性水平α為0.1、0.05、0.01。置信區(qū)間的寬度隨置信系數(shù)的增大而增大。參數(shù)估計(jì)示例(正態(tài)分布)參數(shù)估計(jì)示例(考試成績(jī))六、參數(shù)估計(jì)53武漢工程職業(yè)技術(shù)學(xué)院置信水平:如果將構(gòu)造置信區(qū)間的步驟重54武漢工程職業(yè)技術(shù)學(xué)院對(duì)參數(shù)估計(jì)的理解要注意以下幾點(diǎn):(1)如果用某種方法構(gòu)造的所有區(qū)間中有95%的區(qū)間包含總體參數(shù)的真值,那么用該方法構(gòu)造的區(qū)間稱(chēng)為置信水平為95%的置信區(qū)間。(2)總體參數(shù)的真值是固定的、未知的,而用樣本構(gòu)造的區(qū)間則是不固定的。抽取不同樣本,得到不同的區(qū)間,置信區(qū)間是一個(gè)隨機(jī)區(qū)間,不是所有的區(qū)間都包含總體參數(shù)的真值。六、參數(shù)估計(jì)54武漢工程職業(yè)技術(shù)學(xué)院對(duì)參數(shù)估計(jì)的理解要注意以下幾點(diǎn):六、55武漢工程職業(yè)技術(shù)學(xué)院(3)在實(shí)際問(wèn)題中,進(jìn)行估計(jì)時(shí)往往只抽取一個(gè)樣本,此時(shí)所構(gòu)造的是與該樣本相聯(lián)系的一定置信水平下的置信區(qū)間,該區(qū)間是一個(gè)特定區(qū)間,無(wú)法知道是否包含總體參數(shù)的真值,只是希望這個(gè)區(qū)間是大量包含總體參數(shù)真值的一個(gè)。六、參數(shù)估計(jì)55武漢工程職業(yè)技術(shù)學(xué)院(3)在實(shí)際問(wèn)題中,進(jìn)行估計(jì)時(shí)往往只56武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年樣題)94.M車(chē)間生產(chǎn)螺釘。為了估計(jì)螺釘?shù)拈L(zhǎng)度,從當(dāng)日成品庫(kù)中隨機(jī)抽取25個(gè)螺釘,測(cè)量了它們的長(zhǎng)度,樣本均值為22.7mm。并且求出其長(zhǎng)度總體均值的95%置信區(qū)間為(22.5,22.9)。下述哪些判斷是不正確的:A.當(dāng)日生產(chǎn)的螺釘中,有95%的螺釘之長(zhǎng)度落入(22.5,22.9)之內(nèi)。B.當(dāng)日任取一個(gè)螺釘,其長(zhǎng)度以95%的概率落入(22.5,22.9)之內(nèi)。C.區(qū)間(22.5,22.9)覆蓋總體均值的概率為95%。D.若再次抽取25個(gè)螺釘,樣本均值以95%的概率落入(22.5,22.9)之內(nèi)。六、參數(shù)估計(jì)56武漢工程職業(yè)技術(shù)學(xué)院例題:(CAQ07年樣題)六、參數(shù)估57武漢工程職業(yè)技術(shù)學(xué)院3、單正態(tài)總體均值的置信區(qū)間六、參數(shù)估計(jì)例:某部門(mén)20個(gè)月運(yùn)輸費(fèi)數(shù)據(jù),假設(shè)數(shù)據(jù)服從正態(tài)分布,求運(yùn)輸費(fèi)用均值的95%的置信區(qū)間。BS_運(yùn)輸費(fèi)用.MTW(單t和圖形化匯總)57武漢工程職業(yè)技術(shù)學(xué)院3、單正態(tài)總體均值的置信區(qū)間六、參數(shù)58武漢工程職業(yè)技術(shù)學(xué)院3、單正態(tài)總體均值的置信區(qū)間六、參數(shù)估計(jì)58武漢工程職業(yè)技術(shù)學(xué)院3、單正態(tài)總體均值的置信區(qū)間六、參數(shù)59武漢工程職業(yè)技術(shù)學(xué)院4、單正態(tài)總體方差和標(biāo)準(zhǔn)差的置信區(qū)間例:某部門(mén)20個(gè)月運(yùn)輸費(fèi)數(shù)據(jù),假設(shè)數(shù)據(jù)服從正態(tài)分布,求運(yùn)輸費(fèi)用方差和標(biāo)準(zhǔn)差95%的置信區(qū)間。BS_運(yùn)輸費(fèi)用.MTW六、參數(shù)估計(jì)59武漢工程職業(yè)技術(shù)學(xué)院4、單正態(tài)總體方差和標(biāo)準(zhǔn)差的置信區(qū)間60武漢工程職業(yè)技術(shù)學(xué)院4、正態(tài)樣本方差的S2的分布——卡方分布四、統(tǒng)計(jì)量與抽樣分布60武漢工程職業(yè)技術(shù)學(xué)院4、正態(tài)樣本方差的S2的分布——卡方61武漢工程職業(yè)技術(shù)學(xué)院5、單正態(tài)總體比率的置信區(qū)間服從二項(xiàng)分布,當(dāng)樣本量足夠大(np>5且np(1-p)>5),且p值適中(0.1<p<0.9),二項(xiàng)分布可用正態(tài)分布近似。例:電視臺(tái)節(jié)目收視率調(diào)查。2000名調(diào)查者中1230名收看,求置信區(qū)間。六、參數(shù)估計(jì)61武漢工程職業(yè)技術(shù)學(xué)院5、單正態(tài)總體比率的置信區(qū)間服從二項(xiàng)62武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)6.2.1假設(shè)檢驗(yàn)的基本概念假設(shè):對(duì)總體參數(shù)的具體數(shù)值所作的陳述,稱(chēng)為假設(shè)或稱(chēng)統(tǒng)計(jì)假設(shè)。假設(shè)檢驗(yàn):先對(duì)總體參數(shù)提出某種假設(shè),然后利用樣本信息判斷假設(shè)是否成立的過(guò)程稱(chēng)為假設(shè)檢驗(yàn)。備擇假設(shè):通常將研究者想收集證據(jù)予以支持的假設(shè)稱(chēng)為備擇假設(shè),或稱(chēng)研究假設(shè),用H1或Ha表示。原假設(shè):通常將研究者想收集證據(jù)予以反對(duì)的假設(shè)稱(chēng)為原假設(shè),或稱(chēng)零假設(shè),用H0表示。62武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)6.2.1假設(shè)檢驗(yàn)63武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)6.2.1假設(shè)檢驗(yàn)的基本概念(游戲)例:原來(lái)的熱軋帶肋鋼筋生產(chǎn)線生產(chǎn)的鋼筋平均抗拉強(qiáng)度為580MPa,標(biāo)準(zhǔn)差為9MPa。經(jīng)過(guò)調(diào)整參數(shù)后,希望鋼筋抗拉強(qiáng)度能有所提高。項(xiàng)目團(tuán)隊(duì)實(shí)施改進(jìn)后抽取了25根鋼筋,測(cè)得鋼筋平均抗拉強(qiáng)度為605MPa。問(wèn):能否斷言鋼筋平均抗拉強(qiáng)度確有提高?從此例的問(wèn)題可以看出,我們希望通過(guò)樣本觀測(cè)數(shù)據(jù)即“抽取了25根鋼筋,測(cè)得鋼筋平均抗拉強(qiáng)度為605MPa”去推斷“整批鋼筋平均抗拉強(qiáng)度確有提高”。這實(shí)際就是典型的假設(shè)檢驗(yàn)問(wèn)題:根據(jù)所獲取的樣本運(yùn)用統(tǒng)計(jì)分析方法對(duì)總體X的一個(gè)假設(shè)做出判斷。63武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)6.2.1假設(shè)檢驗(yàn)64武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)統(tǒng)計(jì)分析方法運(yùn)用過(guò)程中蘊(yùn)含的兩條基本原理:(1)帶有概率性質(zhì)的反證法原理在上例中,用μ代表總體的鋼筋抗拉強(qiáng)度的平均值,是未知的。抽樣中得到的是樣本均值,目的就是要用樣本去推斷總體。若μ=580,則認(rèn)為鋼筋抗拉強(qiáng)度的平均值沒(méi)有提高;若μ>580,則認(rèn)為鋼筋抗拉強(qiáng)度的平均值有提高。64武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)統(tǒng)計(jì)分析方法運(yùn)用過(guò)程65武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)統(tǒng)計(jì)分析方法運(yùn)用過(guò)程中蘊(yùn)含的兩條基本原理:(1)帶有概率性質(zhì)的反證法原理為此可以建立兩個(gè)命題,在假設(shè)檢驗(yàn)中稱(chēng)為假設(shè):原假設(shè)(零假設(shè)):關(guān)于樣本所屬總體(指參數(shù)值)與假設(shè)總體(指參數(shù)值)之間無(wú)差異的假設(shè),記為H0;備擇假設(shè)(或?qū)α⒓僭O(shè)):和原假設(shè)相反的假設(shè)。指的是關(guān)于當(dāng)前樣本所屬的總體(指參數(shù)值)與假設(shè)總體(指參數(shù)值)有差異的假設(shè),是根據(jù)樣本信息期待證實(shí)的假設(shè),是否定了原假設(shè)后應(yīng)當(dāng)采取的假設(shè),記為H1。65武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)統(tǒng)計(jì)分析方法運(yùn)用過(guò)程66武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)統(tǒng)計(jì)分析方法運(yùn)用過(guò)程中蘊(yùn)含的兩條基本原理:(1)帶有概率性質(zhì)的反證法原理H0和H1地位是不對(duì)等的,不能隨意交換。因而,在一般情況下,H0要取那個(gè)在實(shí)踐中應(yīng)該受到保護(hù),有足夠證據(jù)時(shí)才能否定的論斷或“不證自明”的論斷作為原假設(shè)。在對(duì)參數(shù)進(jìn)行檢驗(yàn)時(shí),我們將把相等的、無(wú)差別的、等號(hào)成立的結(jié)論作為原假設(shè),記為H0;將待判定、待證明的、不相等、有差別的結(jié)論作為備擇假設(shè),設(shè)為H1。對(duì)于參數(shù)檢驗(yàn)的問(wèn)題,原假設(shè)一定是“等于”某值,備擇假設(shè)中永遠(yuǎn)只可能是“大于”、“小于”或“不等于”這三種情況。66武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)統(tǒng)計(jì)分析方法運(yùn)用過(guò)程67武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)(2)小概率事件原理帶有概率性質(zhì)的反證法原理中,所謂的明顯不合理情況指的就是竟然出現(xiàn)了小概率事件。按照常識(shí),在假設(shè)H0成立的條件下,與大概率事件相比,小概率事件在一次試驗(yàn)中幾乎不會(huì)發(fā)生,如果它發(fā)生了,說(shuō)明最初的假設(shè)“H0是成立的”并不正確,因此應(yīng)該拒絕H0。但與此同時(shí),應(yīng)該注意的是,在處理假設(shè)檢驗(yàn)問(wèn)題時(shí),未考慮特殊情況,雖說(shuō)小概率事件在一次試驗(yàn)中幾乎不會(huì)發(fā)生,但不等于不會(huì)發(fā)生,它仍然有發(fā)生的可能性。所以,根據(jù)小概率事件發(fā)生而做出的拒絕H0的判斷有犯錯(cuò)誤的可能。67武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)(2)小概率事件原理68武漢工程職業(yè)技術(shù)學(xué)院假設(shè)檢驗(yàn)是先對(duì)總體參數(shù)提出一個(gè)假設(shè)值,然后利用樣本信息推斷這一假設(shè)是否成立。μ095%μ095%拒絕原假設(shè)不拒絕原假設(shè)小概率事件原理:小概率事件在一次試驗(yàn)中是幾乎不會(huì)發(fā)生的。假設(shè)檢驗(yàn)是利用小概率事件原理,進(jìn)行反向推斷(反證法)6.2假設(shè)檢驗(yàn)68武漢工程職業(yè)技術(shù)學(xué)院假設(shè)檢驗(yàn)是先對(duì)總體參數(shù)提出一個(gè)假設(shè)值69武漢工程職業(yè)技術(shù)學(xué)院聯(lián)系假設(shè)檢驗(yàn)與區(qū)間估計(jì)都屬于推斷統(tǒng)計(jì)的內(nèi)容,都是根據(jù)樣本信息推斷總體信息。假設(shè)檢驗(yàn)與區(qū)間估計(jì)的聯(lián)系與區(qū)別:區(qū)別區(qū)間估計(jì)是利用大概率原理推斷出總體參數(shù)的范圍,輸出是數(shù)值(一個(gè)區(qū)間)。假設(shè)檢驗(yàn)是以小概率原理為基礎(chǔ),對(duì)總體的狀況所做出的假設(shè)進(jìn)行判斷,輸出的是結(jié)論(拒絕或不能拒絕)。6.2假設(shè)檢驗(yàn)69武漢工程職業(yè)技術(shù)學(xué)院聯(lián)系假設(shè)檢驗(yàn)與區(qū)間估計(jì)的聯(lián)系與區(qū)別:70武漢工程職業(yè)技術(shù)學(xué)院6.2.2假設(shè)的步驟(1)建立原假設(shè)和備擇假設(shè);(2)給出犯兩類(lèi)錯(cuò)誤的概率α、β;(3)從實(shí)際出發(fā)確定什么樣的差別是有意義的,即確定Δ。(4)根據(jù)檢驗(yàn)參數(shù)的類(lèi)型和已知條件,選擇檢驗(yàn)統(tǒng)計(jì)量。(5)計(jì)算樣本量。(6)數(shù)據(jù)采集。(7)計(jì)算檢驗(yàn)統(tǒng)計(jì)量。(8)使用以下三種方法之一做出是否拒絕原假設(shè)的判斷。置信區(qū)間法:根據(jù)樣本統(tǒng)計(jì)量計(jì)算總體參數(shù)的置信區(qū)間,原假設(shè)的參數(shù)值未落入置信區(qū)間,拒絕原假設(shè),否則不能拒絕原假設(shè)。臨界值法:將檢驗(yàn)統(tǒng)計(jì)量的值與拒絕域的臨界值相比較,落在拒絕域中拒絕原假設(shè),否則不能拒絕原假設(shè)。p值法:由檢驗(yàn)統(tǒng)計(jì)量計(jì)算p值,p值小于α拒絕原假設(shè),否則不能拒絕原假設(shè)。6.2假設(shè)檢驗(yàn)70武漢工程職業(yè)技術(shù)學(xué)院6.2.2假設(shè)的步驟6.2假設(shè)檢71武漢工程職業(yè)技術(shù)學(xué)院(1)建立假設(shè)一對(duì)假設(shè):原假設(shè)(H0

)和備擇假設(shè)(H1

)H0與H1地位是不對(duì)等的假設(shè)檢驗(yàn)使用了反證法原理——先假定H0是正確的,如果樣本觀測(cè)值出現(xiàn)了與應(yīng)有的結(jié)果明顯矛盾的情況,則說(shuō)明“H0正確”這個(gè)假設(shè)是錯(cuò)誤的,于是拒絕H0

,這是強(qiáng)結(jié)論;如果沒(méi)有出現(xiàn)矛盾的情況,我們不能說(shuō)接受H0

,只能說(shuō)沒(méi)有足夠的證據(jù)拒絕H0

,這是弱結(jié)論。一般情況下,我們把相等的、無(wú)差別的的結(jié)論作為原假設(shè),所以,等于一定包含在原假設(shè)中;備擇假設(shè)只可能是“大于”、“小于”、“不等于”三種情況。6.2假設(shè)檢驗(yàn)71武漢工程職業(yè)技術(shù)學(xué)院(1)建立假設(shè)一對(duì)假設(shè):原假設(shè)(H072武漢工程職業(yè)技術(shù)學(xué)院假設(shè)檢驗(yàn)的基本形式(以均值檢驗(yàn)為例)假設(shè)雙側(cè)檢驗(yàn)單側(cè)檢驗(yàn)左側(cè)檢驗(yàn)右側(cè)檢驗(yàn)原假設(shè)H0:μ=μ0H0:μ≥μ0H0:μ≤μ0備擇假設(shè)H1:μ≠μ0H1:μ<μ0H1:μ>μ06.2假設(shè)檢驗(yàn)72武漢工程職業(yè)技術(shù)學(xué)院假設(shè)檢驗(yàn)的基本形式(以均值檢驗(yàn)為例)73武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)原假設(shè)與備擇假設(shè)建立示例:例1:原來(lái)的熱軋帶肋鋼筋生產(chǎn)線生產(chǎn)的鋼筋平均抗拉強(qiáng)度為580MPa,標(biāo)準(zhǔn)差為9MPa。經(jīng)過(guò)調(diào)整參數(shù)后,希望鋼筋抗拉強(qiáng)度能有所提高。項(xiàng)目團(tuán)隊(duì)實(shí)施改進(jìn)后抽取了25根鋼筋,測(cè)得鋼筋平均抗拉強(qiáng)度為605MPa。問(wèn):能否斷言鋼筋平均抗拉強(qiáng)度確有提高?試建立原假設(shè)和備擇假設(shè)。73武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)原假設(shè)與備擇假設(shè)建立74武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)例2:某廠規(guī)定產(chǎn)品必須經(jīng)過(guò)檢驗(yàn)合格后才能出廠,其不合格率p0不得超過(guò)5%。現(xiàn)從一批產(chǎn)品中隨機(jī)抽取200個(gè)進(jìn)行檢驗(yàn),發(fā)現(xiàn)16個(gè)不合格品,問(wèn)該產(chǎn)批產(chǎn)品能否出廠?試建立原假設(shè)和備擇假設(shè)。74武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)例2:某廠規(guī)定產(chǎn)品必75武漢工程職業(yè)技術(shù)學(xué)院樣題42.在2010年足球世界杯上,章魚(yú)保羅大顯身手,在8次重要的比賽中,它對(duì)于勝負(fù)的預(yù)測(cè)全部正確。統(tǒng)計(jì)學(xué)家懷疑究竟章魚(yú)是偶然猜對(duì)還是章魚(yú)真能神機(jī)妙算(或另有隱情),需要建立怎樣的假設(shè)檢驗(yàn)?A.進(jìn)行“單比率”檢驗(yàn),H0:比率p=0.5vsH1:比率p≠0.5B.進(jìn)行“單比率”檢驗(yàn),H0:比率p=0.5vsH1:比率p<0.5C.進(jìn)行“單比率”檢驗(yàn),H0:比率p=0.5vsH1:比率p>0.5D.進(jìn)行“單比率”檢驗(yàn),H0:比率p=0vsH1:比率=175武漢工程職業(yè)技術(shù)學(xué)院樣題42.在2010年足球世界杯上,76武漢工程職業(yè)技術(shù)學(xué)院(2)給出犯兩類(lèi)錯(cuò)誤的概率α,β假設(shè)檢驗(yàn)是根據(jù)樣本做出是否拒絕原假設(shè)的決策。我們希望:當(dāng)原假設(shè)成立時(shí),我們沒(méi)有拒絕它;當(dāng)原假設(shè)不成立時(shí),我們拒絕它。而樣本是隨機(jī)的,我們有可能犯下面兩類(lèi)錯(cuò)誤:決策結(jié)果實(shí)際情況H0正確H0不正確(H1正確)未拒絕H0正確決策,概率為1-α,1-α也稱(chēng)置信水平或置信度。第Ⅱ類(lèi)錯(cuò)誤,也稱(chēng)“取偽”錯(cuò)誤,概率為β。拒絕H0第Ⅰ類(lèi)錯(cuò)誤,也稱(chēng)“棄真”錯(cuò)誤,概率為α,α也稱(chēng)為顯著性水平。正確決策,概率為1-β,1-β稱(chēng)檢出力或檢出功效。原假設(shè)被拒絕時(shí),才可能會(huì)犯第Ⅰ類(lèi)錯(cuò)誤;原假設(shè)未被拒絕時(shí),可能會(huì)犯第Ⅱ類(lèi)錯(cuò)誤。樣本量n一定時(shí),α減小,β會(huì)增大;α增大,β會(huì)減小,只有增大樣本量才能同時(shí)減小α

和β。6.2假設(shè)檢驗(yàn)76武漢工程職業(yè)技術(shù)學(xué)院(2)給出犯兩類(lèi)錯(cuò)誤的概率α,β假設(shè)77武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)(3)確定△要從實(shí)際出發(fā)確定什么樣的差別是有意義的。Δμ0μ177武漢工程職業(yè)技術(shù)學(xué)院6.2假設(shè)檢驗(yàn)(3)確定△Δμ0μ78武漢工程職業(yè)技術(shù)學(xué)院(4)選擇檢驗(yàn)統(tǒng)計(jì)量,確定統(tǒng)計(jì)工具檢驗(yàn)統(tǒng)計(jì)量類(lèi)型的選擇實(shí)際上就是確定統(tǒng)計(jì)量抽樣分布的形式?;谝韵聝牲c(diǎn):要檢驗(yàn)的參數(shù)已知條件如,方差已知的單正態(tài)總體的均值檢驗(yàn),選擇Z統(tǒng)計(jì)量,使用“單樣本Z”檢驗(yàn)。6.2假設(shè)檢驗(yàn)78武漢工程職業(yè)技術(shù)學(xué)院(4)選擇檢驗(yàn)統(tǒng)計(jì)量,確定統(tǒng)計(jì)工具檢79武漢工程職業(yè)技術(shù)學(xué)院(5)計(jì)算樣本量檢驗(yàn)問(wèn)題實(shí)際就是判斷樣本是來(lái)源于哪個(gè)總體。不同樣本量樣本均值分布對(duì)比圖n=1n=256.2假設(shè)檢驗(yàn)79武漢工程職業(yè)技術(shù)學(xué)院(5)計(jì)算樣本量不同樣本量樣本均值分80武漢工程職業(yè)技術(shù)學(xué)院(5)計(jì)算樣本量樣本量的計(jì)算公式見(jiàn)藍(lán)皮書(shū)P158,例總體標(biāo)準(zhǔn)差已知,單樣本Z檢驗(yàn)的樣本量計(jì)算公式:結(jié)論:要同時(shí)降低犯兩類(lèi)錯(cuò)誤的風(fēng)險(xiǎn),必須增大樣本量;總體方差變大,要保持原來(lái)的風(fēng)險(xiǎn),必須增大樣本量;擬檢查差異變小,必須增大樣本量。樣本量的大小取決于決策錯(cuò)誤的風(fēng)險(xiǎn)、總體標(biāo)準(zhǔn)差的大小、擬檢查的差異大小這三個(gè)方面的因素。6.2假設(shè)檢驗(yàn)80武漢工程職業(yè)技術(shù)學(xué)院(5)計(jì)算樣本量樣本量的計(jì)算公式見(jiàn)81武漢工程職業(yè)技術(shù)學(xué)院例:假設(shè)鋼筋抗拉強(qiáng)度服從正態(tài)分布,原鋼筋平均抗拉強(qiáng)度2000Kg,標(biāo)準(zhǔn)差300kg,調(diào)整參數(shù)后若平均抗拉強(qiáng)度2150Kg,就認(rèn)為鋼筋抗拉強(qiáng)度是否有所提高。問(wèn):判斷鋼筋抗拉強(qiáng)度是否有所提高需要多大的樣本量?1、建立假設(shè)H0:μ≤2000H1:μ>20002、確定αβ

α=0.05β=0.13、確定Δ取Δ=2150-2000=150kg因?yàn)椋篫0.95=1.645Z0.9=1.28,帶入公式:4、手動(dòng)計(jì)算樣本量:Minitab計(jì)算樣本量:統(tǒng)計(jì)>功效和樣本數(shù)量>單樣本Z6.2假設(shè)檢驗(yàn)81武漢工程職業(yè)技術(shù)學(xué)院例:假設(shè)鋼筋抗拉強(qiáng)度服從正態(tài)分布,82武漢工程職業(yè)技術(shù)學(xué)院(6)數(shù)據(jù)采集根據(jù)計(jì)算的樣本量采集樣本樣本盡可能覆蓋各種變異源的波動(dòng)范圍不同批次不同操作人員不同設(shè)備不同外部環(huán)境......6.2假設(shè)檢驗(yàn)82武漢工程職業(yè)技術(shù)學(xué)院(6)數(shù)據(jù)采集根據(jù)計(jì)算的樣本量采集樣83武漢工程職業(yè)技術(shù)學(xué)院(7)計(jì)算檢驗(yàn)統(tǒng)計(jì)量檢驗(yàn)統(tǒng)計(jì)量是根據(jù)樣本計(jì)算得到的,是對(duì)樣本信息的概括。檢驗(yàn)統(tǒng)計(jì)量是對(duì)總體參數(shù)的點(diǎn)估計(jì)值,但這個(gè)點(diǎn)估計(jì)值只有標(biāo)準(zhǔn)化后才能反映樣本的點(diǎn)估計(jì)值與假設(shè)的總體參數(shù)相比差多少個(gè)抽樣標(biāo)準(zhǔn)差。注:我們平時(shí)所說(shuō)的檢驗(yàn)統(tǒng)計(jì)量就是指標(biāo)準(zhǔn)化的檢驗(yàn)統(tǒng)計(jì)量。如,方差已知的單正態(tài)均值檢驗(yàn),統(tǒng)計(jì)量Z的計(jì)算:6.2假設(shè)檢驗(yàn)83武漢工程職業(yè)技術(shù)學(xué)院(7)計(jì)算檢驗(yàn)統(tǒng)計(jì)量檢驗(yàn)統(tǒng)計(jì)量是根據(jù)84武漢工程職業(yè)技術(shù)學(xué)院A:H1:

μ

>μ0B:H1:

μ

<μ0C:H1:μ≠μ0臨界值Z0.95=1.645臨界值Z0.05=-1.645臨界值Z0.975=1.96臨界值Z0.025=-1.96(8)判斷方法一——臨界值法

根據(jù)備擇假設(shè)的類(lèi)型和α給出臨界值,確定拒絕域:6.2假設(shè)檢驗(yàn)84武漢工程職業(yè)技術(shù)學(xué)院A:H1:μ>μ0B:H1:μ85武漢工程職業(yè)技術(shù)學(xué)院例:假設(shè)鋼筋抗拉強(qiáng)度服從正態(tài)分布,原鋼筋平均抗拉強(qiáng)度2000kg,標(biāo)準(zhǔn)差300kg,調(diào)整參數(shù)后抽取了25根,測(cè)得平均抗拉強(qiáng)度2150kg。問(wèn):能否斷言鋼筋平均抗拉強(qiáng)度有所提高?1、臨界值Z0.95=1.6452、檢驗(yàn)統(tǒng)計(jì)量3、Z>Z0.95=1.645

,落入拒絕域,所以拒絕原假設(shè)。4、鋼筋平均抗拉強(qiáng)度確實(shí)有提高。臨界值拒絕域H0:μ<=2000H1:μ>20006.2假設(shè)檢驗(yàn)85武漢工程職業(yè)技術(shù)學(xué)院例:假設(shè)鋼筋抗拉強(qiáng)度服從正態(tài)分布,原86武漢工程職業(yè)技術(shù)學(xué)院(8)判斷方法二——置信區(qū)間法例:假設(shè)鋼筋抗拉強(qiáng)度服從正態(tài)分布,原鋼筋平均抗拉強(qiáng)度2000Kg,標(biāo)準(zhǔn)差300kg,調(diào)整參數(shù)后抽取了25根,測(cè)得平均抗拉強(qiáng)度2150。問(wèn):能否斷言鋼筋平均抗拉強(qiáng)度有所提高?α=0.05(1)求置信區(qū)間的下限(2)置信區(qū)間的下限2051.3>2000,置信區(qū)間中不包含原假設(shè)參數(shù)2000,所以拒絕原假設(shè)。(3)鋼筋平均抗拉強(qiáng)度確實(shí)有提高。6.2假設(shè)檢驗(yàn)86武漢工程職業(yè)技術(shù)學(xué)院(8)判斷方法二——置信區(qū)間法例:假87武漢工程職業(yè)技術(shù)學(xué)院(8)判斷方法三——P值p值是概率,是在原假設(shè)成立的前提下,出現(xiàn)目前樣本狀況或?qū)υ僭O(shè)更為不利狀況的概率。目前樣本狀況的信息通過(guò)檢驗(yàn)統(tǒng)計(jì)量體現(xiàn),對(duì)原假設(shè)更不利的狀況與備擇假設(shè)的類(lèi)型有關(guān)。所以,P值與檢驗(yàn)統(tǒng)計(jì)量和備擇假設(shè)的類(lèi)型有關(guān)。6.2假設(shè)檢驗(yàn)87武漢工程職業(yè)技術(shù)學(xué)院(8)判斷方法三——P值p值是概率,88武漢工程職業(yè)技術(shù)學(xué)院(8)判斷方法三——P值法A:H1:

μ

>μ0B:H1:

μ

<μ0C:H1:μ≠μ0ppp/2p/26.2假設(shè)檢驗(yàn)88武漢工程職業(yè)技術(shù)學(xué)院(8)判斷方法三——P值法A:H1:89武漢工程職業(yè)技術(shù)學(xué)院例:假設(shè)鋼筋抗拉強(qiáng)度服從正態(tài)分布,原鋼筋平均抗拉強(qiáng)度2000Kg,標(biāo)準(zhǔn)差300kg,調(diào)整參數(shù)后抽取了25根,測(cè)得平均抗拉強(qiáng)度2150。問(wèn):能否斷言鋼筋平均抗拉強(qiáng)度有所提高?假定α=0.05,β=0.2。2、計(jì)算檢驗(yàn)統(tǒng)計(jì)量4、p<α

,所以拒絕原假設(shè)。5、鋼筋平均抗拉強(qiáng)度確實(shí)有提高。1、H0:μ<=2000H1:μ>2000

3、計(jì)算p值p6.2假設(shè)檢驗(yàn)89武漢工程職業(yè)技術(shù)學(xué)院例:假設(shè)鋼筋抗拉強(qiáng)度服從正態(tài)分布,90武漢工程職業(yè)技術(shù)學(xué)院p值與樣本量n的關(guān)系當(dāng)樣本量n越大時(shí),檢驗(yàn)統(tǒng)計(jì)量的絕對(duì)值就越大,p值就越小,就越有可能拒絕原假設(shè)。p值與檢驗(yàn)統(tǒng)計(jì)量、備擇假設(shè)類(lèi)型有關(guān),而檢驗(yàn)統(tǒng)計(jì)量與樣本量n有關(guān),所以p與樣本量n有關(guān)。6.2假設(shè)檢驗(yàn)90武漢工程職業(yè)技術(shù)學(xué)院p值與樣本量n的關(guān)系當(dāng)樣本量n越大時(shí)91武漢工程職業(yè)技術(shù)學(xué)院例:某公司生產(chǎn)鋁盤(pán),鋁盤(pán)上鍍磁性材料厚度要求為50±5mm,從生產(chǎn)線取20萬(wàn)個(gè)數(shù)據(jù),均值為50.3mm,標(biāo)準(zhǔn)差1mm,進(jìn)行假設(shè)檢驗(yàn)判斷該生產(chǎn)線生產(chǎn)是否正常,結(jié)果p<0.05,我們能否認(rèn)為該生產(chǎn)線生產(chǎn)不正常?樣本量太小,不能發(fā)現(xiàn)差別。樣本量太大,則太過(guò)靈敏,沒(méi)有實(shí)際意義。樣本量很重要的,報(bào)告p值的同時(shí),也要報(bào)告樣本量。6.2假設(shè)檢驗(yàn)91武漢工程職業(yè)技術(shù)學(xué)院例:某公司生產(chǎn)鋁盤(pán),鋁盤(pán)上鍍磁性材料92武漢工程職業(yè)技術(shù)學(xué)院連續(xù)數(shù)據(jù)正態(tài)分布或大樣本非正態(tài)分布小樣本且非正態(tài)分布均值檢驗(yàn)單樣本Z單樣本t雙樣本t配對(duì)t單因子方差分析方差檢驗(yàn)單方差雙方差等方差非參數(shù)檢驗(yàn)離散數(shù)據(jù)比例檢驗(yàn)單比率雙比率卡方假設(shè)檢驗(yàn)正態(tài)分布參數(shù)檢驗(yàn)6.2.3假設(shè)檢驗(yàn)的類(lèi)型92武漢工程職業(yè)技術(shù)學(xué)院連續(xù)數(shù)據(jù)正態(tài)分布或大樣本非正態(tài)分布小93武漢工程職業(yè)技術(shù)學(xué)院?jiǎn)慰傮w均值檢驗(yàn)(與某一具體值比較)雙總體均值差檢驗(yàn)配對(duì)檢驗(yàn)多總體均值檢驗(yàn)6.2.4均值檢驗(yàn)93武漢工程職業(yè)技術(shù)學(xué)院?jiǎn)慰傮w均值檢驗(yàn)(與某一具體值比較)694武漢工程職業(yè)技術(shù)學(xué)院?jiǎn)慰傮w獨(dú)立性檢驗(yàn)正態(tài)性檢驗(yàn)(小樣本)雙總體或多總體獨(dú)立性檢驗(yàn)樣本內(nèi)數(shù)據(jù)獨(dú)立樣本間數(shù)據(jù)獨(dú)立正態(tài)性檢驗(yàn)(小樣本)兩組或多組數(shù)據(jù)都服從正態(tài)分布等方差檢驗(yàn)對(duì)均值檢驗(yàn),樣本量n≥30時(shí),可以不進(jìn)行正態(tài)性檢驗(yàn)。6.2.4均值檢驗(yàn)94武漢工程職業(yè)技術(shù)學(xué)院?jiǎn)慰傮w對(duì)均值檢驗(yàn),樣本量n≥30時(shí),95武漢工程職業(yè)技術(shù)學(xué)院獨(dú)立性檢驗(yàn)樣本內(nèi)數(shù)據(jù)獨(dú)立樣本量<40統(tǒng)計(jì)>質(zhì)量工具>運(yùn)行圖樣本量>40統(tǒng)計(jì)>非參數(shù)統(tǒng)計(jì)>游程檢驗(yàn)樣本間數(shù)據(jù)獨(dú)立統(tǒng)計(jì)>基本統(tǒng)計(jì)量>相關(guān)正態(tài)性檢驗(yàn)統(tǒng)計(jì)>基本統(tǒng)計(jì)量>正態(tài)性檢驗(yàn)等方差檢驗(yàn)統(tǒng)計(jì)>方差分析>等方差檢驗(yàn)6.2.4均值檢驗(yàn)95武漢工程職業(yè)技術(shù)學(xué)院獨(dú)立性檢驗(yàn)6.2.4均值檢驗(yàn)96武漢工程職業(yè)技術(shù)學(xué)院1.單總體均值檢驗(yàn)流程大樣本?n>=30總體方差是否已知總體是否服從正態(tài)分布總體方差是否已知將樣本容量增加到30或非參數(shù)檢驗(yàn)用樣本方差代替用樣本方差代替是否是否是否是否單樣本Z單樣本t或單樣本z單樣本Z單樣本t96武漢工程職業(yè)技術(shù)學(xué)院1.單總體均值檢驗(yàn)流程大樣本?總體方97武漢工程職業(yè)技術(shù)學(xué)院1.單總體均值檢驗(yàn)檢驗(yàn)法條件H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域Z檢驗(yàn)σ已知大樣本或正態(tài)小樣本μ≤μ0μ≥μ0μ=μ0μ>μ0μ<μ0μ≠μ0{Z>Z1-α}{Z<Zα}{|Z|>Z1-α/2}Z檢驗(yàn)σ未知大樣本μ≤μ0μ≥μ0μ=μ0μ>μ0μ<μ0μ≠μ0{Z>Z1-α}{Z<Zα}{|Z|>Z1-α/2}t檢驗(yàn)σ未知正態(tài)小樣本μ≤μ0μ≥μ0μ=μ0μ>μ0μ<μ0μ≠μ0{t>t1-α(n-1)}{t<tα(n-1)}{|t|>t1-α/2(n-1)}97武漢工程職業(yè)技術(shù)學(xué)院1.單總體均值檢驗(yàn)檢驗(yàn)法條件H0H198武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P115)抽查面粉的裝包重量,其每包重量在正常生產(chǎn)條件下均值為20Kg,標(biāo)準(zhǔn)差為0.1Kg,某日在生產(chǎn)的產(chǎn)品中抽查16包。問(wèn)當(dāng)日生產(chǎn)的面粉均值是否正常?(BS_面粉重量.mtw)n<40,需要進(jìn)行獨(dú)立性檢驗(yàn)。統(tǒng)計(jì)>質(zhì)量工具>運(yùn)行圖正態(tài)性檢驗(yàn)因?yàn)閚<30,所以必須進(jìn)行正態(tài)性檢驗(yàn)建立假設(shè):H0:μ=20H1:μ≠20σ已知,選用Z統(tǒng)計(jì)量:由于備擇假設(shè)的類(lèi)型為雙邊檢驗(yàn),所以拒絕域的形式為:{|Z|>Z1-α/2}因?yàn)棣?0.05

所以臨界值Z0.975=1.96

,拒絕域?yàn)?{|Z|>1.96}結(jié)論:拒絕原假設(shè),該天面粉均值不正常。1.單總體均值檢驗(yàn)98武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P115)抽查面粉的裝包重99武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)聚類(lèi)性的近似P值<0.05:出現(xiàn)了差別細(xì)微的成堆數(shù)據(jù)。混合的近似P值<0.05:數(shù)據(jù)中有很多相同的值。檢驗(yàn)趨勢(shì)的近似P值<0.05:有連續(xù)上升或下降趨勢(shì)。檢驗(yàn)振動(dòng)的近似P值<0.05:有在均值附近振動(dòng)現(xiàn)象。1.單總體均值的檢驗(yàn)運(yùn)行圖示例99武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)聚類(lèi)性的近似P值<0.05:出現(xiàn)100武漢工程職業(yè)技術(shù)學(xué)院1.單總體均值的檢驗(yàn)100武漢工程職業(yè)技術(shù)學(xué)院1.單總體均值的檢驗(yàn)101武漢工程職業(yè)技術(shù)學(xué)院例:抽查面粉的裝包重量,其每包重量在正常生產(chǎn)條件下均值為20Kg,某日在生產(chǎn)的產(chǎn)品中抽查16包,問(wèn)當(dāng)日生產(chǎn)的面粉均值是否正常?(BS_面粉重量.mtw)σ未知,選用t檢驗(yàn)統(tǒng)計(jì)量,并可根據(jù)以下公式求出檢驗(yàn)統(tǒng)計(jì)量:

由于備擇假設(shè)的類(lèi)型為雙邊檢驗(yàn),所以拒絕域的形式為:{|t|>t1-α/2(n-1)}。t0.975(15)=2.131

,拒絕域?yàn)?{|t|>2.131}結(jié)論:該天面粉均值不正常。1.單總體均值檢驗(yàn)獨(dú)立性檢驗(yàn)(略)正態(tài)性檢驗(yàn)(略)建立假設(shè):H0:μ=20H1:μ≠20101武漢工程職業(yè)技術(shù)學(xué)院例:抽查面粉的裝包重量,102武漢工程職業(yè)技術(shù)學(xué)院2.兩總體均值檢驗(yàn)流程均值檢驗(yàn)獨(dú)立樣本配對(duì)樣本大樣本小樣本、正態(tài)方差已知方差已知方差未知Z檢驗(yàn)方差相等大樣本或正態(tài)小樣本配對(duì)T檢驗(yàn)方差未知Z檢驗(yàn)Z檢驗(yàn)方差不等雙T檢驗(yàn)(勾選等方差)雙T檢驗(yàn)(不勾選等方差)注:minitab工具中無(wú)“雙z檢驗(yàn)”,所以用“雙t檢驗(yàn)”代替。102武漢工程職業(yè)技術(shù)學(xué)院2.兩總體均值檢驗(yàn)流程均值檢驗(yàn)獨(dú)立103武漢工程職業(yè)技術(shù)學(xué)院獨(dú)立雙總體與配對(duì)總體的區(qū)別兩組數(shù)據(jù)針對(duì)兩組個(gè)體數(shù)據(jù)無(wú)需對(duì)應(yīng)樣本觀測(cè)值彼此不影響兩組數(shù)據(jù)樣本量可以不同兩組數(shù)據(jù)是針對(duì)一組個(gè)體處理前后或兩種不同處理的結(jié)果樣本數(shù)據(jù)成對(duì)出現(xiàn),一一對(duì)應(yīng)樣本數(shù)據(jù)組間不獨(dú)立兩組數(shù)據(jù)樣本量一定相同獨(dú)立雙總體配對(duì)總體103武漢工程職業(yè)技術(shù)學(xué)院獨(dú)立雙總體與配對(duì)總體的區(qū)別兩組數(shù)據(jù)104武漢工程職業(yè)技術(shù)學(xué)院3.兩總體均值差檢驗(yàn)檢驗(yàn)法條件H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域Z檢驗(yàn)σ1,σ2已知μ1=μ2μ1=μ2μ1=μ2μ1>μ2μ1<μ2μ1≠μ2{z>z1-α}{z<-z1-α}{|z|>z1-α/2}t檢驗(yàn)未知但相等μ1=μ2μ1=μ2μ1=μ2μ1>μ2μ1<μ2μ1≠μ2{t>t1-α(n+m-2)}{t<-t1-α(n+m-2)}{|t|>t1-α/2(n+m-2)}近似t檢驗(yàn)σ1,σ2未知且不相等μ1=μ2μ1=μ2μ1=μ2μ1>μ2μ1<μ2μ1≠μ2{t>t1-α(ν)}{t<-t1-α(ν)}{|t|>t1-α/2(ν)}104武漢工程職業(yè)技術(shù)學(xué)院3.兩總體均值差檢驗(yàn)檢驗(yàn)法條件H03.兩總體均值差檢驗(yàn)檢驗(yàn)法條件H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域Z檢驗(yàn)σ1,σ2已知μ1=μ2μ1=μ2μ1=μ2μ1>μ2μ1<μ2μ1≠μ2{z>z1-α}{z<zα}{|z|>z1-α/2}105武漢工程職業(yè)技術(shù)學(xué)院3.兩總體均值差檢驗(yàn)檢驗(yàn)法條件H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域Z檢驗(yàn)3.兩總體均值差檢驗(yàn)106武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)法條件H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域t檢驗(yàn)未知但相等μ1=μ2μ1=μ2μ1=μ2μ1>μ2μ1<μ2μ1≠μ2{t>t1-α(n+m-2)}{t<-t1-α(n+m-2)}{|t|>t1-α/2(n+m-2)}3.兩總體均值差檢驗(yàn)106武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)法條件H03.兩總體均值差檢驗(yàn)107武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)法條件H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域近似z檢驗(yàn)σ1,σ2未知m,n大樣本μ1>μ2μ1<μ2μ1≠μ2{z>z1-α}{z<zα}{|z|>z1-α/2}F檢驗(yàn)3.兩總體均值差檢驗(yàn)107武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)法條件H0108武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P128)一家冶金公司用氧氣取代空氣吹入活化泥以改善BOD,在兩種處理的廢水中,分別抽取樣品如下:(BS_生物氧需求量)問(wèn):改用氧氣是否能顯著降低BOD含量?統(tǒng)計(jì)>基本統(tǒng)計(jì)量>雙樣本t空氣184194158218186218165172191179氧氣163185178183171140155179175

p=0.029<0.05拒絕原假設(shè)。結(jié)論:改用氧氣確實(shí)能顯著減少BOD含量。驗(yàn)證使用雙樣本t的前提條件:獨(dú)立,正態(tài),等方差建立假設(shè)3.兩總體均值差檢驗(yàn)108武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P128)一家冶金公司109武漢工程職業(yè)技術(shù)學(xué)院4.配對(duì)樣本檢驗(yàn)配對(duì)檢驗(yàn)就是利用差值的均值與0進(jìn)行單總體的假設(shè)檢驗(yàn)。一般情況下,σ未知,使用單樣本t檢驗(yàn)??梢韵惹蟪霾钪礵,使用“單樣本t”檢驗(yàn),也可以直接利用兩列原始數(shù)據(jù),使用“配對(duì)t”檢驗(yàn)。109武漢工程職業(yè)技術(shù)學(xué)院4.配對(duì)樣本檢驗(yàn)配對(duì)檢驗(yàn)就是利用差110武漢工程職業(yè)技術(shù)學(xué)院(紅書(shū)P240)例6-12:使用A、B兩種方法針對(duì)同一批礦石中二氧化錳的含量進(jìn)行測(cè)量,結(jié)果如下:?jiǎn)枺簝煞N分析方法在α=0.05的顯著性水平上是否有顯著性差異?序號(hào)A方法B方法17.26.622.62.439.49.6415.41556.7767.37.375.24.987.97.491.31109.79.61111.110.74.配對(duì)樣本檢驗(yàn)110武漢工程職業(yè)技術(shù)學(xué)院(紅書(shū)P240)例6-12:使用A111武漢工程職業(yè)技術(shù)學(xué)院方法二:求出差值,使用雙樣本t檢驗(yàn)統(tǒng)計(jì)>基本統(tǒng)計(jì)量>單樣本tP=0.035方法一:使用原始列,使用配對(duì)t檢驗(yàn)統(tǒng)計(jì)>基本統(tǒng)計(jì)量>配對(duì)tP=0.035

配對(duì)t檢驗(yàn)注:如果將此問(wèn)題誤當(dāng)作是普通的雙樣本均值檢驗(yàn),得到P=0.901,結(jié)論為兩種分析方法無(wú)顯著差異。這是因?yàn)椴煌V物之間的差異(組內(nèi)差異)很大,掩蓋了兩種測(cè)量方法間的差異(組間差異)??梢?jiàn),如果將配對(duì)觀測(cè)數(shù)據(jù)誤作為普通兩樣本數(shù)據(jù)來(lái)分析,很容易犯第二類(lèi)錯(cuò)誤(納偽)而得不到正確結(jié)論。4.配對(duì)樣本檢驗(yàn)111武漢工程職業(yè)技術(shù)學(xué)院方法二:求出差值,使用雙樣本t檢驗(yàn)112武漢工程職業(yè)技術(shù)學(xué)院(1)方差檢驗(yàn)的前提條件樣本量一般在30以上正態(tài)性檢驗(yàn)單總體方差檢驗(yàn)總體服從正態(tài)分布:標(biāo)準(zhǔn)法總體為任何連續(xù)分布:調(diào)整法雙總體方差檢驗(yàn)兩總體均服從正態(tài)分布:F檢驗(yàn)總體為任何連續(xù)分布:Levene檢驗(yàn)多總體等方差檢驗(yàn)各總體均服從正態(tài)分布:Bartlett’s檢驗(yàn)總體為任何連續(xù)分布:Levene檢驗(yàn)5.方差檢驗(yàn)112武漢工程職業(yè)技術(shù)學(xué)院(1)方差檢驗(yàn)的前提條件5.方差檢113武漢工程職業(yè)技術(shù)學(xué)院方差檢驗(yàn)單總體雙總體多總體正態(tài)?正態(tài)?正態(tài)?統(tǒng)計(jì)>基本統(tǒng)計(jì)量>單方差(標(biāo)準(zhǔn)法p值)統(tǒng)計(jì)>基本統(tǒng)計(jì)量>單方差(調(diào)整法p值)統(tǒng)計(jì)>基本統(tǒng)計(jì)量>雙方差(F檢驗(yàn)p值)統(tǒng)計(jì)>基本統(tǒng)計(jì)量>單方差(levene檢驗(yàn)p值)統(tǒng)計(jì)>方差分析>等方差檢驗(yàn)(Bartlett’s檢驗(yàn)p值)統(tǒng)計(jì)>方差分析>等方差檢驗(yàn)(levene檢驗(yàn)p值)是是是否否否5.方差檢驗(yàn)113武漢工程職業(yè)技術(shù)學(xué)院方差檢驗(yàn)單總體雙總體多總體正態(tài)?正114武漢工程職業(yè)技術(shù)學(xué)院5.方差檢驗(yàn)114武漢工程職業(yè)技術(shù)學(xué)院5.方差檢驗(yàn)115武漢工程職業(yè)技術(shù)學(xué)院根據(jù)備擇假設(shè)的類(lèi)型和α給出臨界值,確定拒絕域:5.方差檢驗(yàn)115武漢工程職業(yè)技術(shù)學(xué)院根據(jù)備擇假設(shè)的類(lèi)型和α給出臨界值,116武漢工程職業(yè)技術(shù)學(xué)院H0H1拒絕域樣本量應(yīng)大于30,若總體服從正態(tài)分布,檢驗(yàn)統(tǒng)計(jì)量5.方差檢驗(yàn)116武漢工程職業(yè)技術(shù)學(xué)院H0H1拒絕域樣本量應(yīng)大于30,若117武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P136例題5-12BS_軸桿長(zhǎng)度.mtw)已知,軸桿長(zhǎng)度原來(lái)的標(biāo)準(zhǔn)差σ0=0.1,隨機(jī)抽取的30根軸桿測(cè)量長(zhǎng)度,問(wèn):軸桿的標(biāo)準(zhǔn)差是否確實(shí)有降低?(α=0.05)(1)正態(tài)性檢驗(yàn)p=0.511(2)建立假設(shè):H0:σ≥0.1H1:σ<0.1

(3)計(jì)算檢驗(yàn)統(tǒng)計(jì)量:(4)由于備擇假設(shè)的類(lèi)型為左側(cè)檢驗(yàn),所以拒絕域的形式為:

(5)檢驗(yàn)統(tǒng)計(jì)量16.45<臨界值17.7,落入拒絕域,所以拒絕原假設(shè)。(6)結(jié)論:軸桿的標(biāo)準(zhǔn)差確實(shí)有降低。5.方差檢驗(yàn)117武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P136例題5-12118武漢工程職業(yè)技術(shù)學(xué)院如果兩總體均服從正態(tài)分布,則其方差之比服從F分布:5.方差檢驗(yàn)118武漢工程職業(yè)技術(shù)學(xué)院如果兩總體均服從正態(tài)分布,則其方差119武漢工程職業(yè)技術(shù)學(xué)院根據(jù)備擇假設(shè)的類(lèi)型和α給出臨界值,確定拒絕域:5.方差檢驗(yàn)119武漢工程職業(yè)技術(shù)學(xué)院根據(jù)備擇假設(shè)的類(lèi)型和α給出臨界值,120武漢工程職業(yè)技術(shù)學(xué)院H0H1拒絕域拒絕域5.方差檢驗(yàn)120武漢工程職業(yè)技術(shù)學(xué)院H0H1拒絕域拒絕域5.方差檢驗(yàn)121武漢工程職業(yè)技術(shù)學(xué)院(6)結(jié)論:兩種不同的方法對(duì)BOD含量影響的方差是相等的。(4)由于備擇假設(shè)的類(lèi)型為雙側(cè)檢驗(yàn),拒絕域的形式為F≤Fα/2(n-1,m-1)或F≥F1-α/2(n-1,m-1)

α=0.05時(shí),F(xiàn)α/2(9,8)=0.244F1-α/2(9,8)=4.357例(藍(lán)書(shū)P139例題5-13BS_生物氧需求量.mtw)已知,空氣法抽取的10個(gè)樣品和氧氣法抽取的9個(gè)樣品BOD含量,問(wèn):兩種不同的方法對(duì)BOD含量影響的方差是否相等?(α=0.05)(1)正態(tài)性檢驗(yàn)(2)建立假設(shè):H0:σ12=σ22H1:σ12≠σ22

(3)計(jì)算檢驗(yàn)統(tǒng)計(jì)量:(5)檢驗(yàn)統(tǒng)計(jì)量未落入拒絕域,不能拒絕原假設(shè)。5.方差檢驗(yàn)121武漢工程職業(yè)技術(shù)學(xué)院(6)結(jié)論:兩種不同的方法對(duì)BOD122武漢工程職業(yè)技術(shù)學(xué)院前面討論的均值檢驗(yàn)和方差檢驗(yàn)是針對(duì)連續(xù)數(shù)據(jù),現(xiàn)在討論的比率檢驗(yàn)是針對(duì)離散數(shù)據(jù)。離散型隨機(jī)變量通常服從二項(xiàng)或泊松分布總體服從二項(xiàng)分布的比率檢驗(yàn)單總體比率檢驗(yàn)雙總體比率檢驗(yàn)多總體比率檢驗(yàn)總體服從泊松分布的比率檢驗(yàn)單總體泊松率檢驗(yàn)雙總體泊松率檢驗(yàn)6.比率檢驗(yàn)122武漢工程職業(yè)技術(shù)學(xué)院前面討論的均值檢驗(yàn)和方差檢驗(yàn)是針對(duì)123武漢工程職業(yè)技術(shù)學(xué)院二項(xiàng)分布的概率函數(shù)二項(xiàng)分布的期望及方差二項(xiàng)分布的正態(tài)近似假設(shè)我們獨(dú)立地進(jìn)行n次試驗(yàn),每次試驗(yàn)的結(jié)果只有“成功”和“失敗”兩種結(jié)果,而且每次“試驗(yàn)”獲得成功的概率都是固定的常數(shù)p,計(jì)成功的總次數(shù)為隨機(jī)變量X,則X的分布稱(chēng)為二項(xiàng)分布。記作X~B(n,p)6.比率檢驗(yàn)123武漢工程職業(yè)技術(shù)學(xué)院二項(xiàng)分布的概率函數(shù)二項(xiàng)分布的期望及124武漢工程職業(yè)技術(shù)學(xué)院6.比率檢驗(yàn)124武漢工程職業(yè)技術(shù)學(xué)院6.比率檢驗(yàn)125武漢工程職業(yè)技術(shù)學(xué)院這時(shí)就可以用近似Z檢驗(yàn)對(duì)參數(shù)p進(jìn)行檢驗(yàn),檢驗(yàn)統(tǒng)計(jì)量為:6.比率檢驗(yàn)125武漢工程職業(yè)技術(shù)學(xué)院這時(shí)就可以用近似Z檢驗(yàn)對(duì)參數(shù)p進(jìn)行126武漢工程職業(yè)技術(shù)學(xué)院右側(cè)檢驗(yàn):H1:

p

>p

0左側(cè)檢驗(yàn):H1:

p

<p

0雙側(cè)檢驗(yàn):H1:p≠p

0根據(jù)備擇假設(shè)的類(lèi)型和α給出臨界值,確定拒絕域:臨界值Z0.95=1.645臨界值Z0.05=-1.645臨界值Z0.975=1.96臨界值Z0.025=-1.96臨界值絕對(duì)值1.966.比率檢驗(yàn)126武漢工程職業(yè)技術(shù)學(xué)院右側(cè)檢驗(yàn):H1:p>p0左127武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)法H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域Z檢驗(yàn)6.比率檢驗(yàn)127武漢工程職業(yè)技術(shù)學(xué)院檢驗(yàn)法H0H1檢驗(yàn)統(tǒng)計(jì)量拒絕域Z128武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P163例題6-1)隨機(jī)抽取500位小學(xué)生進(jìn)行視力檢測(cè),其中310位近視。問(wèn):是否可以認(rèn)為小學(xué)生近視比率超過(guò)6成?(α=0.05)(1)建立假設(shè)H0:π=0.6H1:π>0.6(2)計(jì)算檢驗(yàn)統(tǒng)計(jì)量:因?yàn)?,所以采用近似Z檢驗(yàn):(3)由于備擇假設(shè)的類(lèi)型為右側(cè)檢驗(yàn),拒絕域的形式為Z≥Z1-α

α=0.05時(shí),Z1-α=1.645(4)檢驗(yàn)統(tǒng)計(jì)量Z=0.913<1.645,未落入拒絕域,不能拒絕原假設(shè)。(5)結(jié)論:小學(xué)生近視比率沒(méi)有超過(guò)6成。6.比率檢驗(yàn)128武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P163例題6-1)隨機(jī)129武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P163例題6-1)隨機(jī)抽取500位小學(xué)生進(jìn)行視力檢測(cè),其中310位近視。問(wèn):是否可以認(rèn)為小學(xué)生近視比率超過(guò)6成?(α=0.05)解:統(tǒng)計(jì)>基本統(tǒng)計(jì)量>單比率

P=0.193,不能拒絕原假設(shè)。不勾選此項(xiàng),計(jì)算機(jī)自動(dòng)按二項(xiàng)分布精確計(jì)算;勾選此項(xiàng),按正態(tài)分布近似計(jì)算;一般情況下,不必選此項(xiàng),除非樣本量特別大。6.比率檢驗(yàn)129武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P163例題6-1)隨機(jī)130武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P163例題6-1修改)隨機(jī)抽取5000位小學(xué)生進(jìn)行視力檢測(cè),其中3100位近視。問(wèn):是否可以認(rèn)為小學(xué)生近視比率超過(guò)6成?(α=0.05)(1)建立假設(shè)H0:π=0.6H1:π>0.6(2)計(jì)算檢驗(yàn)統(tǒng)計(jì)量:因?yàn)?,所以采用近似Z檢驗(yàn)(3)由于備擇假設(shè)的類(lèi)型為右側(cè)檢驗(yàn),拒絕域的形式為Z≥Z1-α

α=0.05時(shí),Z1-α=1.645(4)檢驗(yàn)統(tǒng)計(jì)量Z=2.88>1.645,落入拒絕域,拒絕原假設(shè)。(5)結(jié)論:小學(xué)生近視比率超過(guò)6成。6.比率檢驗(yàn)130武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P163例題6-1修改)隨131武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P167例題6-2)分別從兩種工藝條件下抽取1500片及1800片芯片,A種工藝條件下有340片一等品,B種工藝條件下有350件一等品。問(wèn):A工藝條件下比B工藝條件下有較高的一等品率嗎?(α=0.05)(1)建立假設(shè)H0:π1=π

2H1:π1>π

2(2)計(jì)算檢驗(yàn)統(tǒng)計(jì)量:因?yàn)闃颖玖枯^大,所以采用近似Z檢驗(yàn)(3)由于備擇假設(shè)的類(lèi)型為右側(cè)檢驗(yàn),拒絕域的形式為Z≥Z1-α

α=0.05時(shí),Z1-α=1.645(4)檢驗(yàn)統(tǒng)計(jì)量Z=2.267>1.645,落入拒絕域,拒絕原假設(shè)。(5)結(jié)論:A工藝條件下比B工藝條件下有較高的一等品率。6.比率檢驗(yàn)131武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P167例題6-2)分132武漢工程職業(yè)技術(shù)學(xué)院統(tǒng)計(jì)>基本統(tǒng)計(jì)量>雙比率P=0.012,拒絕原假設(shè)。例(藍(lán)書(shū)P167例題6-2)分別從兩種工藝條件下抽取1500片及1800片芯片,A種工藝條件下有340片一等品,B種工藝條件下有350件一等品。問(wèn):A工藝條件下比B工藝條件下有較高的一等品率嗎?(α=0.05)一般情況下,不必選此項(xiàng),除非樣本量特別大。6.比率檢驗(yàn)132武漢工程職業(yè)技術(shù)學(xué)院統(tǒng)計(jì)>基本統(tǒng)計(jì)量>雙比率133武漢工程職業(yè)技術(shù)學(xué)院例(藍(lán)書(shū)P168例題6-3)甲乙兩種品牌的手機(jī),訪問(wèn)使用甲品牌的顧客800位,340位滿意;訪問(wèn)使用乙

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論