




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
加法原理和乘法原理第3講加法原理和乘法原理第3講問題情境問題情境
例1:王老師從北京到天津,他可以乘火車也可以乘長途汽車。根據(jù)上圖中的信息,你知道王老師在一天中去天津能有多少種不同的走法嗎?北京天津5種4種也就是分成兩類,一類是乘火車,一類是乘長途汽車。例1:王老師從北京到天津,他可以乘火車也可以乘長途汽車。
例1:王老師從北京到天津,他可以乘火車也可以乘長途汽車。根據(jù)上圖中的信息,你知道王老師在一天中去天津能有多少種不同的走法嗎?北京天津5種4種5+4=9(種)答:有9種不同的走法。例1:王老師從北京到天津,他可以乘火車也可以乘長途汽車。小結(jié)
加法原理:
一般地,如果完成一件事需要k類方法,第一類方法中有m1種不同的方法,第二類方法中有m2種不同的方法……第k類方法中有mk種不同的做法,則完成這件事共有
N=m1+m2+…+mk種不同的方法。小結(jié)加法原理:在一個紙箱內(nèi)裝有5個小球,另一個紙箱內(nèi)裝有9個小球,所有小球顏色各不相同。從這兩個紙箱里任取一個小球,有多少種不同的取法?即學即練5+9=14(種)答:有14種不同的取法。在一個紙箱內(nèi)裝有5個小球,另一個紙箱內(nèi)裝有9個小球,所
例2:學校組織讀書活動,要求每個同學讀一本書。小明到圖書館借書時,圖書館有不同的外語書150本,不同的科技書200本,不同的小說100本。那么小明任借一本書可以有多少種不同的選法?圖書館的書分成了幾類?例2:學校組織讀書活動,要求每個同學讀一本書。小明到圖書
例2:學校組織讀書活動,要求每個同學讀一本書。小明到圖書館借書時,圖書館有不同的外語書150本,不同的科技書200本,不同的小說100本。那么小明任借一本書可以有多少種不同的選法?150+200+100=450(種)答:小明任借一本書有450種不同的選法。例2:學校組織讀書活動,要求每個同學讀一本書。小明到圖書學校選拔樂隊的選手,三年級有4人報名,四年級有8人報名,五年級有6人報名。如果現(xiàn)在只選一名選手參加樂隊,你知道有多少種不同的選法嗎?即學即練4+8+6=18(種)答:有18種不同的選法。學校選拔樂隊的選手,三年級有4人報名,四年級有8人報名
例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,所有這些小球顏色各不相同。問:(1)從兩個口袋內(nèi)任取一個小球,有多少種不同的取法?小球裝在兩個口袋內(nèi)相當于分成了兩類!例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,
例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,所有這些小球顏色各不相同。問:(1)從兩個口袋內(nèi)任取一個小球,有多少種不同的取法?3+8=11(種)答:有11種不同的取法。例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,
例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,所有這些小球顏色各不相同。問:(2)從兩個口袋內(nèi)各取一個小球,有多少種不同的取法?兩個口袋內(nèi)各取一個小球是不是分步完成?例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,
例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,所有這些小球顏色各不相同。問:(2)從兩個口袋內(nèi)各取一個小球,有多少種不同的取法?3×8=24(種)答:有24種不同的取法。例3:一個口袋內(nèi)裝有3個小球,另一個口袋內(nèi)裝有8個小球,小結(jié)
在乘法原理中,完成一件事要分成若干個步驟,每一個步驟要一個接一個地進行(每一個步驟都是必不可少),才能完成這件事。凡是“分步”完成的事情用乘法原理。在加法原理中,把完成一件事的各種辦法分成幾類,每一類中的任何一種方法都能完成這件事。凡是“分類”完成的事情用加法原理。小結(jié)在乘法原理中,完成一件事要分成若干個步驟,每
希望小學的歌唱小組由10名男生和8名女生組成。(1)現(xiàn)在要從這些學生中挑選一名男生和一名女生配成一組去參加演唱比賽,有多少種不同的搭配方法?即學即練10×8=80(種)答:有80種不同的搭配方法。
(2)如果要從男生或女生中任選一人去登臺領(lǐng)獎,,有多少種不同的選法?10+8=18(種)答:有18種不同的選法。希望小學的歌唱小組由10名男生和8名女生組成。即學即
例4:如圖,從甲地到乙地有4條路,從乙地到丙地有2條路,從甲地到丙地有3條路。那么,從甲地到丙地共有多少種走法?從甲地到丙地是不是可以分成兩類?例4:如圖,從甲地到乙地有4條路,從乙地到丙地有2條路,
例4:如圖,從甲地到乙地有4條路,從乙地到丙地有2條路,從甲地到丙地有3條路。那么,從甲地到丙地共有多少種走法?②甲地→乙地→丙地①甲地→丙地3種分步完成4×2=8(種)3+8=11(種)答:從甲地到丙地共有11種走法。例4:如圖,從甲地到乙地有4條路,從乙地到丙地有2條路,有四個小鎮(zhèn),編號A、B、C、D,它們的大致位置及道路分布如下圖所示,那么,從A鎮(zhèn)去C鎮(zhèn)一共有多少種不同的走法?即學即練A→D→C:2×4=8(種)答:從A鎮(zhèn)去C鎮(zhèn)一共有14種不同的走法。A→B→C:2×3=6(種)一共:8+6=14(種)有四個小鎮(zhèn),編號A、B、C、D,它們的大致位置及道路分
例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上表示信號,每次可以任掛一面、二面或三面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?怎樣理解“每次可以任掛一面、二面或三面,并且不同的順序表示不同的信號”這個條件呢?例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上
例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上表示信號,每次可以任掛一面、二面或三面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?信號是不是可以按旗子面數(shù)分成三類?例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上
例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上表示信號,每次可以任掛一面、二面或三面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?①掛一面旗子3種(紅或黃或藍)人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上
例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上表示信號,每次可以任掛一面、二面或三面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?②掛二面旗子分步完成3種2種3×2=6(種)人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上
例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上表示信號,每次可以任掛一面、二面或三面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?③掛三面旗子
分步完成3種2種1種3×2×1=6(種)人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上
例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上表示信號,每次可以任掛一面、二面或三面,并且不同的順序表示不同的信號,一共可以表示多少種不同的信號?3+6+6=15(種)答:一共可以表示15種不同的信號。人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理例5:某信號兵用紅、黃、藍三面旗子從上到下掛在豎直的旗桿上從3名男生、2名女生中選出優(yōu)秀學生干部3人,其中至少有一名女生,一共有多少種不同的選法?即學即練1名女生,2名男生:2×3=6(種)答:一共有9種不同的選法。2名女生,1名男生:1×3=3(種)6+3=9(種)人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理從3名男生、2名女生中選出優(yōu)秀學生干部3人,其中至少有今天你學到了什么?加法原理:
一般地,如果完成一件事需要k類方法,第一類方法中有m1種不同的方法,第二類方法中有m2種不同的方法……第k類方法中有mk種不同的做法,則完成這件事共有
N=m1+m2+…+mk種不同的方法。人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理人教版五年級下冊數(shù)學奧數(shù):加法原理和乘法原理今天你學到了什么?加法原理:人教版五年級下冊數(shù)學奧數(shù):加法原今天你學到了什么?
在乘法原理中,完成一件事要分成若干個步驟,每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 我愛青菜班本課程
- 內(nèi)環(huán)境穩(wěn)定護理
- 2024-2025下學期幼兒園科學探索計劃
- 危重病人護理質(zhì)量分析
- 護理個案:糖尿病人
- 培訓生專屬指南
- 古代時間管理心理思想
- 2025年外研版英語二年級下冊學習策略計劃
- 幼兒心理健康與體格鍛煉計劃
- 小學足球教練員培訓計劃
- 《酒店概論》考試復(fù)習參考題庫(含答案)
- 版式設(shè)計網(wǎng)格課件
- 消防安全檢查表(車間)
- 產(chǎn)品報價單(5篇)
- 大飛機C919:追夢五十載,“破繭化蝶”
- 品牌視覺形象設(shè)計智慧樹知到答案章節(jié)測試2023年天津科技大學
- 高考語文復(fù)習-議論文結(jié)尾寫作之深化主旨 練習
- 漢語詞匯與文化課件
- 淺析公路橋梁施工中高性能混凝土的應(yīng)用
- 新概念英語第三冊Lesson8 課件
- DBJ∕T 13-196-2014 水泥凈漿材料配合比設(shè)計與試驗規(guī)程
評論
0/150
提交評論