《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程課件_第1頁
《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程課件_第2頁
《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程課件_第3頁
《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程課件_第4頁
《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程課件_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程怎樣思想,就有怎樣的生活《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程《駱駝祥子》名著導(dǎo)讀復(fù)習(xí)進(jìn)程怎樣思想,就有怎樣的生活《駱駝祥子》名著導(dǎo)讀老舍(1899~1966)現(xiàn)代作家、杰出的語言大師,是我國“五·四”以來新文學(xué)的開拓者之一,享有世界聲譽(yù)的著名作家。原名舒慶春,字舍予,滿族北京人?!拔幕蟾锩背跗谝虮黄群ν逗员M。曾因創(chuàng)作優(yōu)秀話劇《龍須溝而被授予“人民藝術(shù)家”稱號。生寫了約計800萬字的作品。主要有:長篇小說《老張的哲學(xué)》、《二馬》、《離婚》、《牛天賜傳》、《駱駝祥子》、《四世同堂》;中篇小說《我這一輩子》;短篇小說《月牙兒》、《柳家大院》、《斷魂槍》;劇本《龍須溝》、《茶館》、《方珍珠》。他的作品以具有獨特的幽默風(fēng)格和濃郁的民族色彩,以及從內(nèi)容到形式的雅俗共賞而贏得了廣大的讀者。近年來,找規(guī)律的題目越來越多地出現(xiàn)在中考試卷當(dāng)中,當(dāng)然,也越來越受到重視。因此,本文就從函數(shù)思想在代數(shù)規(guī)律中的應(yīng)用和函數(shù)思想在平面圖形規(guī)律中的應(yīng)用進(jìn)行簡單概述,以逐步提高學(xué)生的解題效率。一、函數(shù)在代數(shù)規(guī)律中的應(yīng)用代數(shù)是初中數(shù)學(xué)的重要內(nèi)容,也是數(shù)學(xué)規(guī)律試題中常見的試題。在代數(shù)規(guī)律試題的解答過程中,首先也是最主要的步驟就是觀察,一般是根據(jù)數(shù)據(jù)的個數(shù)來判斷是選擇用一次函數(shù)還是二次函數(shù)又或者是反比例函數(shù)等,總之,觀察是最重要的,也是直接影響學(xué)生是否能順利解決問題的關(guān)鍵。因此,本文就從所給出的數(shù)據(jù)增幅程度來進(jìn)行簡單概述。1.增幅相等例1.23,45,67,89…,求第50位數(shù)是多少。分析上面所列出的數(shù)字之間的關(guān)系,仔細(xì)分析不難看出,屬于等幅度增加的代數(shù)規(guī)律題目。所以,在解答的過程中,我們就可以滲透函數(shù)思想,將第x的數(shù)據(jù)設(shè)為y,即會出現(xiàn):當(dāng)x=1時,y=23當(dāng)x=2時,y=45當(dāng)x=3時,y=67……通過觀察我們可以將y=ax+b的一次函數(shù)式。將x=1,y=23;x=2,y=45帶入,求解方程組,即23=a+b45=2a+b解得:a=22,b=1,即y=22x+1所以,第50位數(shù)應(yīng)為1101從這個過程來看,在增幅相等的數(shù)學(xué)規(guī)律中,一般情況下我們都是可以將其設(shè)為一次函數(shù)的。因為對于增幅相等的數(shù)學(xué)規(guī)律來說其本質(zhì)考查的是等差數(shù)列(an=a1+(n-1)d)的相關(guān)知識。但是,因為初中階段并沒有涉及數(shù)列的相關(guān)知識,所以,在解答該題的過程中,我們只能用函數(shù)思想來進(jìn)行解答。2.增幅不等例2.給定下面一列分式:;-;;-…(其中x≠0)(1)把任意一個分式除以前面的一個分式,你發(fā)現(xiàn)了什么規(guī)律?(2)根據(jù)所發(fā)現(xiàn)的規(guī)律,試寫出給定的那列分式中的第7個分式。該題是2007年杭州中考數(shù)學(xué)試卷中的一道試題,但是,確實是增幅不等的數(shù)學(xué)規(guī)律中的具有代表性的試題。分析:根據(jù)試題中的提示,把任意一個分式除以前面的一個分式,我們可以輕松地發(fā)現(xiàn),相除后的結(jié)果都是:-接著,分析數(shù)據(jù),設(shè)分式中第t個數(shù)為g,則有:當(dāng)t=1時,g=當(dāng)t=2時,g=-當(dāng)t=3時,g=……該題并不能像上題一樣看成一次函數(shù),所以,從觀察可以看出,我們可以將其設(shè)為g=aqt和上題一樣將當(dāng)t=1時,g=;當(dāng)t=2時,g=-通過解方程組得出a=-x;g=-這樣就可以得出本題的規(guī)律,即g=-x(-)t可以看出這是一道關(guān)于t和g之間的指數(shù)函數(shù)關(guān)系。其實,該題中的增幅恰好是高中所學(xué)的等比數(shù)列的相關(guān)知識,所以,類似這樣的相除可以得到規(guī)律的試題都可以這樣找規(guī)律,但是,并不是所有的增幅不等的數(shù)學(xué)規(guī)律都可以設(shè)為這樣的函數(shù)的。比如:1,9,25,49,(),()…類似這樣的要用公式法??傊?,在代數(shù)規(guī)律的應(yīng)用中,具體的找規(guī)律的方法要因題而異,切記出現(xiàn)所有的試題都用同種方法的現(xiàn)象,這樣只會在考試中浪費時間。二、函數(shù)在平面圖形規(guī)律中的應(yīng)用平面圖形規(guī)律題相對于代數(shù)規(guī)律題要存在一定的難度,主要是因為學(xué)生必須要將相關(guān)的平面圖轉(zhuǎn)化成代數(shù)式,這樣才能在觀察中找到規(guī)律,才能借助函數(shù)思想來提高解題效率。1.鋪地板鋪地板類型的找規(guī)律試題是我們最常見的,所以,在解題的過程中,我們要引導(dǎo)學(xué)生掌握解決這類試題的基本思路,進(jìn)而,在學(xué)生不斷練習(xí)中逐步提高學(xué)習(xí)效率。例3.用相同規(guī)格大小的黑白色正方形瓷磚鋪設(shè)矩形地面,如圖,請問,第n個圖形中需要用黑色瓷磚多少塊。分析:在該題的解答過程中,我們首先要分析題目中所給出的三個圖,并找到圖形的個數(shù)與黑色正方形之間的關(guān)系。此時,我們就可以將第n個圖形設(shè)為x,將所用的黑色瓷磚設(shè)為y。從圖中可以得出:當(dāng)x=1時,y=8當(dāng)x=2時,y=12當(dāng)x=3時,y=16……如果依舊看不出之間的規(guī)律的話,學(xué)生可以自主再畫幾個圖形,進(jìn)行分析觀察,比如:當(dāng)x=4時,y=20等,接著,分析數(shù)據(jù)之間的關(guān)系。從y的數(shù)據(jù)中分析,該題屬于增幅相等的試題,也就是說,我們可以將y與x之間的關(guān)系設(shè)為一次函數(shù),即y=ax+b任選其中的兩組數(shù)據(jù),解得:a=4,b=4這樣就可以求出x與y之間的關(guān)系,即為y=4x+4,所以,也非常容易求出第n個圖形中應(yīng)該用4n+4塊黑色瓷磚。2.圓點題例4.觀察下圖,分析第n個圖形中所有圓點的個數(shù)應(yīng)該是多少。分析:該題屬于圖形變化類的規(guī)律題,和上題一樣,我們首先應(yīng)該觀察圖形,將其中的代數(shù)關(guān)系找出來。仔細(xì)分析,在第一個圖中有4個圓點,在第二個圖中有9個圓點,第3個圖中有16個……如果我們將第幾個圖設(shè)為x,將圓點數(shù)設(shè)為y,則存在下面的關(guān)系,即當(dāng)x=1,y=4=1+3當(dāng)x=2,y=9=1+3+5當(dāng)x=3,y=16=1+3+5+7……從數(shù)據(jù)之間的關(guān)系可以看出,和例1與例2的關(guān)系都是不一樣的,所以,不能將x與y的關(guān)系設(shè)為一次函數(shù)或者是指數(shù)函數(shù)。此時,不妨我們可以將其設(shè)為二次函數(shù)試一下。即y=ax2+bx+c并將上述的三組數(shù)據(jù)帶入,列方程組進(jìn)行求解,不難求出a=1,b=2,c=1即y=x2+2x+1,此時進(jìn)行驗證,根據(jù)上面的三個圖,手動畫出第4個圖和第5個圖,然后進(jìn)行驗證,這樣就能非常輕松地得到答案。通過上述的幾個試題分析我們可以看出,函數(shù)思想在初中階段的數(shù)學(xué)規(guī)律試題中的作用是不可替代的。但是,需要注意的是,數(shù)學(xué)思想在具有規(guī)律性的試題中的應(yīng)用需要學(xué)生不斷地練習(xí),這樣才能很快找到其中的規(guī)律,才能真正提高數(shù)學(xué)解題效率。評價一節(jié)課的好壞,不僅僅是教學(xué)方法、教學(xué)形式和教學(xué)手段的好壞,更主要的是看課堂的思維容量的大小,學(xué)生思維活動的密度和強(qiáng)度如何,即學(xué)生的思維得到的訓(xùn)練程度,學(xué)生是否能將老師所教的知識進(jìn)行內(nèi)化、拓展、升華,成為自己的東西,并形成一定的數(shù)學(xué)思維能力.所謂思維容量,就是指在一節(jié)課的時間內(nèi)學(xué)生得到思維訓(xùn)練的量.對數(shù)學(xué)課堂教學(xué)中學(xué)生思維活動的引導(dǎo),以及思維容量的控制,就是思維訓(xùn)練的量化設(shè)計過程.?dāng)?shù)學(xué)課堂教學(xué)的容量大小,應(yīng)當(dāng)是指其思維容量的大小,而不是數(shù)學(xué)題目的堆積.?dāng)?shù)學(xué)問題設(shè)置的好壞要看其是否具有思維的價值,大量的平行題訓(xùn)練是沒有太多的思維訓(xùn)練價值的,課堂思維容量依賴于課堂教學(xué)的精心設(shè)計和科學(xué)的安排.美國著名教育家布魯姆的掌握學(xué)習(xí)策略認(rèn)為:“只要有適當(dāng)?shù)膬?nèi)容和適當(dāng)?shù)臅r間,一個人能學(xué)習(xí)的東西幾乎所有人都能掌握.”只要我們在課堂教學(xué)中科學(xué)安排,張弛有度,學(xué)生就能掌握相關(guān)知識.高中數(shù)學(xué)課堂教學(xué)的思維容量應(yīng)當(dāng)適中,不能過大,也不能過少.如果課堂教學(xué)的思維容量過大,教師就會因教學(xué)內(nèi)容過多而提快語速,加快節(jié)奏,這樣就使教師在教學(xué)時少了幾分從容和自然,多了幾分緊張和壓力.學(xué)生也會因信息過多,一下子接受不了,學(xué)起來囫圇吞棗,吃夾生飯,不消化.最終導(dǎo)致大腦皮層疲勞,消極倦怠,學(xué)習(xí)提不起神,久而久之便失去學(xué)習(xí)的興趣.當(dāng)然,課堂思維容量過小也不可取,因為思維容量過小,信息就很少,那會使學(xué)生有了玩小動作、開小差的機(jī)會,尤其是優(yōu)生“吃不飽”便會分心,時間一長,便會喪失學(xué)習(xí)的主動性,難以主動探究問題.多年來,筆者一直擔(dān)任校青年教師優(yōu)課比賽的評委,發(fā)現(xiàn)絕大多數(shù)青年教師都會在教學(xué)形式和教學(xué)手段上做文章,注重課件的制作和多媒體的使用,課堂教學(xué)中力求師生互動,這些都很好,但很少有人能全面地思考課堂教學(xué)中學(xué)生思維的密度和強(qiáng)度,思考何時練,何時點評,何時引申拓展,以及訓(xùn)練和拓展的程度.不久前筆者有幸參加江蘇省邗江中學(xué)舉辦的全國課堂教學(xué)觀摩研討會,感受頗多,專家們對教材的分析、學(xué)情的了解、課堂時間的控制、問題設(shè)置的數(shù)量和難易度、課堂教學(xué)節(jié)奏的把握等都是無可挑剔的.那么,怎樣才能合理地量化設(shè)計高中數(shù)學(xué)課堂教學(xué)中的思維訓(xùn)練呢?一、遵循認(rèn)知規(guī)律,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的思維火花高中學(xué)生已經(jīng)具備了較強(qiáng)的認(rèn)知能力,學(xué)生的集中思維能力較強(qiáng),同時還具有一定的發(fā)散思維的能力.教師的教學(xué)設(shè)計應(yīng)當(dāng)根據(jù)學(xué)生的認(rèn)知規(guī)律進(jìn)行,要由淺入深,循序漸進(jìn),不斷地引發(fā)學(xué)生的思維.高一高二的新授課要更多地創(chuàng)設(shè)問題的情境,讓學(xué)生去發(fā)現(xiàn)知識的發(fā)生發(fā)展過程.要多為學(xué)生設(shè)計階梯,架橋鋪路,讓學(xué)生在探索知識的過程中生成能力.少數(shù)青年教師在教學(xué)中方法簡單,知識講解缺乏鋪墊和引導(dǎo),學(xué)生接受起來較為困難.如在對數(shù)運算公式后就尋問函數(shù)y=e|lnx|的圖象的畫法,其實學(xué)生還沒有掌握對數(shù)運算公式.而在講解函數(shù)值域求法時,學(xué)生還沒有掌握函數(shù)值域問題的一般求法,就讓學(xué)生去了求解問題:“函數(shù)y=log2(kx2+4kx+3)值域為R時的k值.”這些都是違背學(xué)生認(rèn)知規(guī)律的做法.在課堂教學(xué)中,我們要努力創(chuàng)設(shè)各種不同的教學(xué)情境,幫學(xué)生開啟思維之門,發(fā)揮他們各自的想象力.這樣,教師方可因勢利導(dǎo),使教學(xué)事半功倍.深圳市數(shù)學(xué)特級教師李志敏在給學(xué)生上《雙曲線的標(biāo)準(zhǔn)方程》一課時,針對學(xué)生已經(jīng)學(xué)習(xí)了橢圓的標(biāo)準(zhǔn)方程的特點,讓學(xué)生進(jìn)行類比學(xué)習(xí),他為學(xué)生設(shè)計了相關(guān)問題:(1)求雙曲線標(biāo)準(zhǔn)方程有哪些基本步驟?(2)如何化簡|(x+c)2+y2-(x-c)2+y2|=2a?(3)焦點在x軸和焦點在y軸的雙曲線標(biāo)準(zhǔn)方程有何區(qū)別?(4)嘗試求解課本例題,對照解答你能歸納雙曲線標(biāo)準(zhǔn)方程的基本類型嗎?讓學(xué)生帶著問題進(jìn)行自主探究,并要求學(xué)生向教師質(zhì)疑.學(xué)生探討之后,教師對相關(guān)問題進(jìn)行適度點撥,真是教者自如,學(xué)者輕松.二、講究民主教學(xué),暴露思考過程,調(diào)整學(xué)生的思維方向《學(xué)記》中有這樣一句話:“道而弗牽,強(qiáng)而弗抑,開而弗達(dá)”,說的是:引導(dǎo)而不牽著,鼓勵而不壓抑,開導(dǎo)而不灌輸.高中數(shù)學(xué)教學(xué)中,要讓學(xué)生多參與和討論,要敢于放手讓學(xué)生探究.沒有學(xué)生的參與,就不能發(fā)現(xiàn)學(xué)生思維的不足,也就不能調(diào)整和引導(dǎo)學(xué)生進(jìn)行科學(xué)思維.認(rèn)識是一個走彎路的過程,要尊重學(xué)生的認(rèn)知心理過程,要講究民主,注意傾聽,讓學(xué)生把話說完,不要撲滅學(xué)生思維的火花.在一節(jié)題為《指數(shù)函數(shù)性質(zhì)應(yīng)用》的優(yōu)課評比中,兩位教師遇到同一種情況,在講解不等式5x-1>5x-3時,教師用分類討論的方法講解,學(xué)生均提出與教師不同的方法,教師甲擔(dān)心學(xué)生方法不好,影響教學(xué)任務(wù)的完成,便讓學(xué)生下課后再討論其他方法,而教師乙則讓學(xué)生說完,結(jié)果學(xué)生用換元法很快得解,還有學(xué)生又提出數(shù)形結(jié)合的方法.從教學(xué)實效看,教師乙的做法注意到了學(xué)生在課堂教學(xué)中的參與度,教師甲則缺乏民主,浪費了極好的思維拓展的機(jī)會.可見,教學(xué)中應(yīng)關(guān)注學(xué)生的學(xué)習(xí)行為,重視學(xué)生在課堂教學(xué)中的“參與度”.教學(xué)必須講“過程”,教師力求暴露學(xué)生的思維過程,不要過早地把結(jié)論告訴學(xué)生,要堅持“推遲判斷”,不要輕易地將“窗戶紙捅破”,教師要弄清楚什么是自己該做的,什么是應(yīng)該讓學(xué)生去做的,不能越俎代庖,要讓學(xué)生感受到數(shù)學(xué)是自然的.蘇霍姆林斯基認(rèn)為,了解和研究學(xué)生是掌握教育藝術(shù)的基本功.教育藝術(shù)體現(xiàn)在尊重信任孩子,保護(hù)兒童道德幼芽,運用鼓勵性評價激發(fā)心靈活力.有時教師對學(xué)生的想法,甚至是一點點的思維的火花給予肯定,都可能激發(fā)學(xué)生的學(xué)習(xí)興趣.教師對學(xué)生“參與度”的關(guān)注程度,能影響學(xué)生的整個學(xué)習(xí)階段,甚至是一生.三、把握教學(xué)主線,倡導(dǎo)變式訓(xùn)練,控制教學(xué)的思維密度波利亞認(rèn)為:“數(shù)學(xué)有兩個側(cè)面,它是歐幾里德式的嚴(yán)謹(jǐn)科學(xué),但也是別的什么東西.由歐幾里德方法提出來的數(shù)學(xué)看來像是一門系統(tǒng)的演繹科學(xué),但在創(chuàng)造過程中的數(shù)學(xué)看來卻像是一門實驗性的歸納科學(xué).”數(shù)學(xué)教育工作者,應(yīng)當(dāng)把握教學(xué)的主線,做到?jīng)芪挤置鳎⑦M(jìn)行變式訓(xùn)練,這是“雙基”教學(xué)的重要組成部分.要講究知識之間的聯(lián)系,幫助學(xué)生建立一個良好的認(rèn)知結(jié)構(gòu).如果說沒有系統(tǒng)的知識是一鍋粥,不知道從哪兒下手的話,那么良好的知識結(jié)構(gòu)就像一碗面條,線條分明,挑一根就能理順一片.例如,在一節(jié)題為《兩角和與差的三角函數(shù)》的復(fù)習(xí)課中,教者能通過設(shè)計求值、化簡、證明等問題,將各種公式之間的聯(lián)系教給學(xué)生,在問題設(shè)計中,將題目的條件作不斷變化,激發(fā)學(xué)生對知識的理解.?dāng)?shù)學(xué)課堂教學(xué)的本質(zhì)是思維活動的教學(xué),但一節(jié)課的思維密度的控制,直接影響學(xué)生的接受程度.在知識編排和問題設(shè)計中,應(yīng)當(dāng)注意抓住主體,適度拓展,通過變式教學(xué)滲透知識的相互聯(lián)系,從而形成完整的知識體系.如在《直線與平面所成角的習(xí)題課》上,教者從“最小角定理”入手,設(shè)置了一系列的問題:(1)斜線與平面所成角為α,平面內(nèi)過斜足的直線與斜線所成角為β,過斜足的直線與斜線在平面內(nèi)射影線所成角為γ,則cosγ=cosα·cosβ;(2)過平面內(nèi)一個角的頂點的斜線上任意一點到角的兩邊距離相等,則斜線在平面內(nèi)的射影線是平面內(nèi)這個角平分線(如圖1);圖1(3)已知兩條異面直線成60°角,過空間任意一點作直線與兩條異面直線均成60°,這樣的直線有幾條?問題不斷變化,由淺入深,但解決問題的本質(zhì)沒變,這就強(qiáng)化了對某一問題的認(rèn)識.如果直接給出問題(3),其思維能力要求較高,思維的密度也必然加大.四、優(yōu)化教學(xué)手段,激發(fā)學(xué)習(xí)興趣,提升教學(xué)的思維強(qiáng)度俗話說:興趣是最好的老師.教師的精彩引出能使學(xué)生一下子對知識產(chǎn)生興趣.在講解《用二分法解方程》時,一位教師從央視李勇主持的價格競猜節(jié)目入手,引出二分法的解題思想,學(xué)生不僅有興趣,而且很快理解了解題方法的本質(zhì).在講解《中心投影和平行投影》一課時,教者讓學(xué)生觀看兩幅世界名畫《伏爾加河上的纖夫》和《最后的晚餐》,尋問學(xué)生繪畫的藝術(shù)特點是什么,為什么能成為世界名畫.從而引出具有中心投影的特點,直接引入這節(jié)課的主題,學(xué)生被深深地吸引了.在講《橢圓標(biāo)準(zhǔn)方程》一課時,江蘇省數(shù)學(xué)特級教師陶維林用幾何畫板演示如下問題:點A是定圓E內(nèi)一定點,點B是圓E上任意一點,線段AB的中垂線為l,觀察點B運動時會有什么特殊圖形出現(xiàn)(如圖2).圖2在演示過程中,直線l掃過平面的部分區(qū)域,恰好形成沒有掃過的橢圓區(qū)域,此時,教者尋問:這個橢圓是哪個點的運動軌跡?學(xué)生很自然地去思考分析.此后教者繼續(xù)尋問:為什么會形成橢圓這一軌跡?從而引出符合橢圓定義的軌跡問題.教學(xué)中學(xué)生的思維完全被教師牽引著,課堂的思維強(qiáng)度在不知不覺中增大了.可見,課堂教學(xué)的思維容量不是通過設(shè)置高難度問題而得出來的,激發(fā)學(xué)生學(xué)習(xí)興趣是增強(qiáng)思維容量,加大思維強(qiáng)度的最好途徑.新時代教學(xué)技術(shù)手段的發(fā)展變化日新月異,這些教學(xué)技術(shù)手段運用于教學(xué)后對教學(xué)活動產(chǎn)生了巨大的影響,它不僅增加了課堂傳播信息的窗口,擴(kuò)大了學(xué)生的視野,而且實現(xiàn)了教學(xué)方法的改革,縮短了教學(xué)進(jìn)程,提高了教學(xué)效益.但是這些教學(xué)技術(shù)手段只是教學(xué)輔助手段,不是運用得越多越好,要根據(jù)學(xué)生的接受能力和課堂的有效時間來選擇相關(guān)的教學(xué)技術(shù)手段,才會發(fā)揮其巨大的效果.在大力倡導(dǎo)教育改革的今天,數(shù)學(xué)課堂教學(xué)的設(shè)計是每位教師必須要研究和探討的問題.正如江蘇省數(shù)學(xué)特級教師陶維林所說,不管教育最終發(fā)展如何,教師上課始終要做到“三個帶著”,即帶著數(shù)學(xué)的本質(zhì)來上課,帶著數(shù)學(xué)教學(xué)的本質(zhì)來上課,帶著數(shù)學(xué)學(xué)習(xí)的本質(zhì)來上課.?dāng)?shù)學(xué)教師的課堂教學(xué)永遠(yuǎn)是數(shù)學(xué)思維訓(xùn)練的教學(xué),數(shù)學(xué)課堂教學(xué)的思維容量也會成為教師教學(xué)研究的永恒的話題.讓我們精心設(shè)計課堂教學(xué),科學(xué)引導(dǎo),讓每個學(xué)生都能學(xué)會探究知識和思考問題的方法,從而成為具有較高數(shù)學(xué)素質(zhì)的優(yōu)秀人才.《駱駝祥子》名著導(dǎo)讀老舍(1899~1966)現(xiàn)代作家、杰出的語言大師,是我國“五·四”以來新文學(xué)的開拓者之一,享有世界聲譽(yù)的著名作家。原名舒慶春,字舍予,滿族北京人?!拔幕蟾锩背跗谝虮黄群ν逗员M。曾因創(chuàng)作優(yōu)秀話劇《龍須溝而被授予“人民藝術(shù)家”稱號。生寫了約計800萬字的作品。主要有:長篇小說《老張的哲學(xué)》、《二馬》、《離婚》、《牛天賜傳》、《駱駝祥子》、《四世同堂》;中篇小說《我這一輩子》;短篇小說《月牙兒》、《柳家大院》、《斷魂槍》;劇本《龍須溝》、《茶館》、《方珍珠》。他的作品以具有獨特的幽默風(fēng)格和濃郁的民族色彩,以及從內(nèi)容到形式的雅俗共賞而贏得了廣大的讀者。老舍出生于一個貧民家庭。1918年北京師范學(xué)校畢業(yè)后任小學(xué)校長和中學(xué)教員。1924年赴英國任倫敦大學(xué)東方學(xué)院漢語講師,閱讀了大量英文作品,并從事小說創(chuàng)作。1930年回國后任濟(jì)南齊魯大學(xué)、青島山東大學(xué)教授。1938年中華全國文藝界抗敵協(xié)會成立,他被選為理事兼總務(wù)部主任,以抗戰(zhàn)救國為主題,寫了各種形式的文藝作品。1946年應(yīng)邀姓名:舒舍予赴美國講學(xué)1年。中華人民共和國成立筆名:老舍生辰:1899年2月3日后不久應(yīng)召回國,曾任中國文聯(lián)副主席忌日:1966年8月24日中國作家協(xié)會副主席等職。文革中,同民族:滿籍貫:北京許多老一輩愛國文藝家一樣,老舍遭到職業(yè):作家了惡毒攻擊和迫害。1966年,他被逼無宗教:基督教奈,含冤自沉于北京太平湖,享年67歲老舍自傳舒舍予,字老舍,現(xiàn)年四十歲,面黃無須。生于北平。三歲失怙,可謂無父;志學(xué)之年,帝王不存,可謂無君。無父無君,特別孝愛老母,布爾喬嚴(yán)之仁未能一掃空地。幼讀三百篇,不求甚解。繼學(xué)師范,遂奠教書匠之基,及壯,糊口四方,教書為業(yè),甚難發(fā)財,每購獎券,以得末彩為榮,亦甘于寒賤也。二十七歲發(fā)憤著書,科學(xué)哲學(xué)無所懂,故寫小說,博大家一笑,沒什么了不得。三十四歲結(jié)婚,已有一男一女,均狡猾可喜。閑時喜養(yǎng)花,不得其法,每每有葉無花,亦不忍棄。書無所不讀全無所獲并不著急。教書作事均甚認(rèn)真,往往吃虧,亦不后悔。如此而已,再活四十年,也許有點出息《駱駝祥子》是老舍三十年代的優(yōu)秀代表作,它標(biāo)志著老舍小說的成熟,也是老舍小說的最高峰,是五四以來小說中頗受讀者喜愛的,具有世界影響的著名長篇之一?!恶橊勏樽印肥抢仙岬拈L篇小說代表作?!恶橊勏樽印返谋尘靶≌f的主人翁—祥子,是個來自農(nóng)村的破了產(chǎn)的青年農(nóng)民,20-30年代正是中國現(xiàn)代史上最黑暗,混亂多災(zāi)多難的年代;新舊軍闊連年不斷地進(jìn)行爭權(quán)奪勢的戰(zhàn)爭,再加上各種自然災(zāi)害的肆行,中國農(nóng)村迅速走向破產(chǎn)。因而成批破產(chǎn)的農(nóng)民為了謀求生路便紛紛涌入城市,祥子就是涌入城市的破產(chǎn)農(nóng)民中的一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論