高等數學第一章知識點總結(7篇)_第1頁
高等數學第一章知識點總結(7篇)_第2頁
高等數學第一章知識點總結(7篇)_第3頁
高等數學第一章知識點總結(7篇)_第4頁
高等數學第一章知識點總結(7篇)_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1/1高等數學第一章知識點總結(實用7篇)高等數學第一章知識點總結第1篇一、準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題概念抽象、符號術語多是集合單元的一個顯著特點,例如交集、并集、補集的概念及其表示方法,集合與元素的關系及其表示方法,集合與集合的關系及其表示方法,子集、真子集和集合相等的定義等等。

這些概念、關系和表示方法,都可以作為求解集合問題的依據、出發(fā)點甚至是突破口。因此,要想學好集合的內容,就必須在準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題上下功夫。

二、注意弄清集合元素的性質,學會運用元素分析法審視集合的有關問題眾所周知,集合可以看成是一些對象的全體,其中的每一個對象叫做這個集合的元素。集合中的元素具有“三性”:(1)、確定性:集合中的元素應該是確定的,不能模棱兩可。

(2)、互異性:集合中的元素應該是互不相同的,相同的元素在集合中只能算作一個。(3)、無序性:集合中的元素是無次序關系的。

三、體會集合問題中蘊含的數學思想方法,掌握解決集合問題的基本規(guī)律四、重視空集的特殊性,防止由于忽視空集這一特殊情況導致的解題失誤一定范圍的,確定的,可以區(qū)別的事物,當作一個整體來看待,就叫做集合,簡稱集,其中各事物叫做集合的元素或簡稱元。任何集合是它自身的子集.元素與集合的關系:元素與集合的關系有“屬于”與“不屬于”兩種。

集合的分類:并集:以屬于A或屬于B的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。

再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。

圖中的陰影部分就是A∩B。無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N+是正整數的全體,且Nn={1,2,3,……,n},如果存在一個正整數n,使得集合A與Nn一一對應,那么A叫做有限集合。

差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)注:空集包含于任何集合,但不能說“空集屬于任何集合”.補集:屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。

CuA={3,4}。在信息技術當中,常常把CuA寫成~A。

某些指定的對象集在一起就成為一個集合,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集,任何集合是它本身的子集,子集,真子集都具有傳遞性。

『說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,寫作A?B。

集合的表示方法:常用的有列舉法和描述法。1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內﹐這種表示集合的方法叫做列舉法。

{1,2,3,……}2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小于π的正實數組成的集合表示為:{x|0評論000。

高等數學第一章知識點總結第2篇凱程考研集訓營,為學生引路,為學員服務!

1.函數、極限與連續(xù):主要考查極限的計算或已知極限確定原式中的常數;討論函數連續(xù)性和判斷間斷點類型;無窮小階的比較

;討論連續(xù)函數在給定區(qū)間上零點的個數或確定方程在給定區(qū)間上有無實根。

2.一元函數微分學:主要考查導數與微分的定義;各種函數導數與微分的計算;利用洛比達法則求不定式極限;函數極值;方程的的個數;證明函數不等式;與中值定理相關的證明;最大值、最小值在物理、經濟等方面實際應用;用導數研究函數性態(tài)和描繪函數圖形;求曲線漸近線。

3.一元函數積分學:主要考查不定積分、定積分及廣義積分的計算;變上限積分的求導、極限等;積分中值定理和積分性質的證明;定積分的應用,如計算旋轉面面積、旋轉體體積、變力作功等。

4.多元函數微分學:主要考查偏導數存在、可微、連續(xù)的判斷;多元函數和隱函數的一階、二階偏導數;多元函數極值或條件極值在與經濟上的應用;二元連續(xù)函數在有界平面區(qū)域上的最大值和最小值。此外,數學一還要求會計算方向導數、梯度、曲線的切線與法平面、曲面的切平面與法線。

5.多元函數的積分學:包括二重積分在各種坐標下的計算,累次積分交換次序。數一還要求掌握三重積分,曲線積分和曲面積分以及相關的重要公式。

6.微分方程及差分方程:主要考查一階微分方程的通解或特解;二階線性常系數齊次和非齊次方程的特解或通解;微分方程的建立與求解。差分方程的基本概念與一介常系數線形方程求解方法

打有準備之戰(zhàn),勝算才能更大。希望各20XX考研生抓緊時間復習,在考研中取得好成績。

一分耕耘一分收獲。加油!

高等數學第一章知識點總結第3篇夾逼準則夾逼準則分為數列部分和函數部分,本質是一樣的,即在x0的某個去心鄰域,若g(x)≤f(x)≤h(x),且g(x)和h(x)的極限都相同,那么f(x)也具有極限,且與他們倆個相同,就像兩個函數把f(x)夾逼住了一樣

準則2單調有界數列必有極限

重要極限1lim(x→0)sinx/x=1

重要極限2lim(x→∞)(1+1/x)^x=e

柯西極限存在準則數列{an}收斂的充要條件:對任給的ε>0,存在正整數N,使得n,m>N時,有丨an-am丨<ε

高等數學第一章知識點總結第4篇觀察limβ/α,如果=0,那么β是α的高階無窮??;=∞,低階無窮?。?c≠0,同階無窮小;=1,等價無窮小,記作α~β

如果limβ/(α^k)=c≠0,k>0,那么就是k階無窮小

常用等價無窮?。?/p>

sinx~x

tanx~x

arcsinx~x

1-cosx~1/2x2

(1+a)^(1/n)-1~a/n

secx-1~1/2x2

a^x-1~xlna

定理2可以理解為求極限時可以分子分母可以用等價無窮小來替換,不過這里要注意,必須是乘法形式,比如經典例題lim(tanx-sinx)/x3,如果把tanx和sinx都用x替換,就變成了0,那就不對了。不過這兩者可以提出來一個sinx,變成sinx(1/cosx-1)這個sinx就可以換成x了。

高等數學第一章知識點總結第5篇第一章集合與函數概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}2.集合的表示方法:列舉法與描述法。注意?。撼S脭导捌溆浄ǎ悍秦撜麛导醋匀粩导┯涀鳎篘正整數集N*或N+整數集Z有理數集Q實數集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}②數學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分類:1.有限集含有有限個元素的集合2.無限集含有無限個元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關系1.“包含”關系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關系(5≥5,且5≤5,則5=5)實例:設A={x|x2-1=0}B={-1,1}“元素相同”結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B①任何一個集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同時BíA那么A=B3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運算1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。

記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪、全集與補集(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作:CSA即CSA={x|x?S且x?A}SCsAA(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

高等數學第一章知識點總結第6篇定理1若兩個函數都連續(xù),則他們的四則運算函數(除法時分母不能等于0)也連續(xù)

定理2若一函數在區(qū)間上單調,那么它的反函數也在對應區(qū)間單調

定理3limf[g(x)]=f[limg(x)]

基本初等函數在它們的定義域內都是連續(xù)的

一切初等函數在其定義區(qū)間內都是連續(xù)的

第十節(jié)閉區(qū)間上連續(xù)函數的性質

定理1(有界性與最大最小值定理)在閉區(qū)間上連續(xù)的函數在該區(qū)間上有界且一定能取得它的最大值和最小值

定理2(零點定理)設函數f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與f(b)異號(即f(a)·f(b)<0),則在開區(qū)間(a,b)內至少有一點ξ,使f(ξ)=0

定理3(介值定理)設函數f(x)在閉區(qū)間[a,b]上連續(xù),且在該區(qū)間的兩端分別取到A和B,那么一定能在對應的開區(qū)間找到一個值,使f(x0)=C,C在A、B之間

定理4(一致連續(xù)性定理)如果函數f(x)在[a,b]上連續(xù),那么它在該區(qū)間上一定一致連續(xù)

高等數學第一章知識點總結第7篇網絡結構的打不上,概要:第一章集合與函數概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性說。第一章集合與函數概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}2.集合的表示方法:列舉法與描述法。注意?。撼S脭导捌溆浄ǎ悍秦撜麛导醋匀粩导┯涀鳎篘正整數集N*或N+整數集Z有理數集Q實數集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}②數學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分類:1.有限集含有有限個元素的集合2.無限集含有無限個元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關系1.“包含”關系子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA2.“相等”關系(5≥5,且5≤5,則5=5)實例:設A={x|x2-1=0}B={-11}“元素相同”結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B①任何一個集合是它本身的子集。

A?A②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論