




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線x-2y+2=0關于直線x=1對稱的直線方程是()A.x+2y-4=0 B.2x+y-1=0 C.2x+y-3=0 D.2x+y-4=02.已知在中,為的中點,,,點為邊上的動點,則最小值為()A.2 B. C. D.-23.已知向量,且,則的值為()A.1 B.3 C.1或3 D.44.如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結論正確的是()A.這15天日平均溫度的極差為B.連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天C.由折線圖能預測16日溫度要低于D.由折線圖能預測本月溫度小于的天數(shù)少于溫度大于的天數(shù)5.等比數(shù)列的前項和為,,且成等差數(shù)列,則等于()A. B. C. D.6.在等差數(shù)列中,若,則()A.10 B.15 C.20 D.257.若,則()A.- B. C. D.8.等差數(shù)列的首項為.公差不為,若成等比數(shù)列,則數(shù)列的前項和為()A. B. C. D.9.已知等比數(shù)列的前項和為,若,,則數(shù)列的公比()A. B. C.或 D.以上都不對10.已知,則().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.求值:_____.12.已知三個頂點的坐標分別為,若⊥,則的值是______.13.已知數(shù)列的通項公式,則_______.14.函數(shù)的遞增區(qū)間是__________.15.若復數(shù)滿足(為虛數(shù)單位),則__________.16.已知,,且,若恒成立,則實數(shù)的取值范圍是____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設數(shù)列,滿足:,,,,.(1)寫出數(shù)列的前三項;(2)證明:數(shù)列為常數(shù)列,并用表示;(3)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式.18.在中,,且的邊a,b,c所對的角分別為A,B,C.(1)求的值;(2)若,試求周長的最大值.19.已知函數(shù),且函數(shù)是偶函數(shù),設(1)求的解析式;(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.20.已知(1)求函數(shù)的單調遞減區(qū)間:(2)已知,求的值域21.已知:以點為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中0為原點。(1)求證:的面積為定值;(2)設直線與圓C交于點M,N,若,求圓C的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
所求直線的斜率與直線x-2y+2=0的斜率互為相反數(shù),且在x=1處有公共點,求解即可?!驹斀狻恐本€x-2y+2=0與直線x=1的交點為P1,3因為直線x-2y+2=0的斜率為12,所以所求直線的斜率為-故所求直線方程為y-32=-故答案為A.【點睛】本題考查了直線的斜率,直線的方程,直線關于直線的對稱問題,屬于基礎題。2、C【解析】
由,結合投影幾何意義,建立平面直角坐標系,結合向量數(shù)量積的定義及二次函數(shù)的性質即可求解.【詳解】由,結合投影幾何意義有:過點作的垂線,垂足落在的延長線上,且,以所在直線為軸,以中點為坐標原點,建立如圖所示的平面直角坐標系,則設,其中則解析式是關于的二次函數(shù),開口向上,對稱軸時取得最小值,當時取得最小值故選:【點睛】本題考查向量方法解決幾何最值問題,屬于中等題型.3、B【解析】
先求出,再利用向量垂直的坐標表示得到關于的方程,從而求出.【詳解】因為,所以,因為,則,解得所以答案選B.【點睛】本題主要考查了平面向量的坐標運算,以及向量垂直的坐標表示,屬于基礎題.4、B【解析】
利用折線圖的性質,結合各選項進行判斷,即可得解.【詳解】由某地某月1日至15日的日平均溫度變化的折線圖,得:在中,這15天日平均溫度的極差為:,故錯誤;在中,連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天,故正確;在中,由折線圖無法預測16日溫度要是否低于,故錯誤;在中,由折線圖無法預測本月溫度小于的天數(shù)是否少于溫度大于的天數(shù),故錯誤.故選.【點睛】本題考查命題真假的判斷,考查折線圖的性質等基礎知識,考查運算求解能力、數(shù)據(jù)處理能力,考查數(shù)形結合思想,是基礎題.5、A【解析】
根據(jù)等差中項的性質列方程,并轉化為的形式,由此求得的值,進而求得的值.【詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【點睛】本小題主要考查等差中項的性質,考查等比數(shù)列基本量的計算,屬于基礎題.6、C【解析】
設等差數(shù)列的公差為,得到,又由,代入即可求解,得到答案.【詳解】由題意,設等差數(shù)列的公差為,則,又由,故選C.【點睛】本題主要考查了等差數(shù)列的通項公式的應用,其中解答中熟記等差數(shù)列的通項公式,準確計算是解答的關鍵,著重考查了計算與求解能力,屬于基礎題,.7、B【解析】
首先觀察兩個角之間的關系:,因此兩邊同時取余弦值即可.【詳解】因為所以所以,選B.【點睛】本題主要考查了三角函的誘導公式.解決此題的關鍵在于拼湊出,再利用誘導公式(奇變偶不變、符號看象限)即可.8、A【解析】
根據(jù)等比中項定義可得;利用和表示出等式,可構造方程求得;利用等差數(shù)列求和公式求得結果.【詳解】由題意得:設等差數(shù)列公差為,則即:,解得:本題正確選項:【點睛】本題考查等差數(shù)列基本量的計算,涉及到等比中項、等差數(shù)列前項和公式的應用;關鍵是能夠構造方程求出公差,屬于??碱}型.9、C【解析】
根據(jù)和可得,解得結果即可.【詳解】由得,所以,所以,所以,解得或故選:C.【點睛】本題考查了等比數(shù)列的通項公式的基本量的運算,屬于基礎題.10、A【解析】
.所以選A.【點睛】本題考查了二倍角及同角正余弦的差與積的關系,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)同角三角函數(shù)的基本關系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,同角角三角函數(shù)基本關系主要有:,.屬于基礎題。12、【解析】
求出,再利用,求得.【詳解】,因為⊥,所以,解得:.【點睛】本題考查向量的坐標表示、數(shù)量積運算,要注意向量坐標與點坐標的區(qū)別.13、【解析】
本題考查的是數(shù)列求和,關鍵是構造新數(shù)列,求和時先考慮比較特殊的前兩項,剩余7項按照等差數(shù)列求和即可.【詳解】令,則所求式子為的前9項和.其中,,從第三項起,是一個以1為首項,4為公差的等差數(shù)列,,故答案為1.【點睛】本題考查的是數(shù)列求和,關鍵在于把所求式子轉換成為等差數(shù)列的前項和,另外,帶有絕對值的數(shù)列在求和時要注意里面的特殊項.14、;【解析】
先利用輔助角公式對函數(shù)化簡,由可求解.【詳解】函數(shù),由,可得,所以函數(shù)的單調增區(qū)間為.故答案為:【點睛】本題考查了輔助角公式、正弦函數(shù)的圖像與性質,需熟記公式與性質,屬于基礎題.15、【解析】分析:由復數(shù)的除法運算可得解.詳解:由,得.故答案為:.點睛:本題考查了復數(shù)的除法運算,屬于基礎題.16、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),,(2)證明見解析,(3)證明見解析,【解析】
(1)利用遞推關系式直接求解即可.(2)由整理化簡得,從而可證出結論.(3)首先由遞推關系式證出,再由對數(shù)的運算性質以及等比數(shù)列的定義即可證出.利用【詳解】(1),,;(2)證明:,∴為常數(shù)列4,即,∴;(3),∴是以為首項,2為公比的等比數(shù)列,∴.【點睛】本題考查了由數(shù)列的遞推關系式研究數(shù)列的性質、等比數(shù)列的定義,屬于中檔題.18、(1)(2)【解析】
(1)利用三角公式化簡得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【詳解】(1)原式(2),時等號成立.周長的最大值為【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,周長的最大值,意在考查學生解決問題的能力.19、(1);(2);(3).【解析】
(1)對稱軸為,對稱軸為,再根據(jù)圖像平移關系求解;(2)分離參數(shù),轉化為求函數(shù)的最值;(3)令為整體,轉化為二次函數(shù)根的分布問題求解.【詳解】(1)函數(shù)的對稱軸為,因為向左平移1個單位得到,且是偶函數(shù),所以,所以.(2)即又,所以,則因為,所以實數(shù)的取值范圍是.(3)方程即化簡得令,則若方程有三個不同的實數(shù)根,則方程必須有兩個不相等的實數(shù)根,且或,令當時,則,即,當時,,,,舍去,綜上,實數(shù)的取值范圍是.【點睛】本題考查求函數(shù)解析式,函數(shù)不等式恒成立及函數(shù)零點問題.函數(shù)不等式恒成立通常采用參數(shù)分離法;函數(shù)零點問題要結合函數(shù)與方程的關系求解.20、(1)();(2)【解析】
(1)將三角函數(shù)化簡為,再求函數(shù)的單調減區(qū)間.(2)根據(jù)得到,得到最后得到答案.【詳解】(1),令解得:可得函數(shù)的單調遞減區(qū)間為:();(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標準版租賃合同范本-資產租賃協(xié)議
- 2025商業(yè)空間室內裝修合同
- 2025年購銷合同協(xié)議書模板
- 2025家居裝修設計合同協(xié)議書范本
- 2024年九年級語文下冊 第一單元 第3課 短詩五首教學設計 新人教版
- 樹木采伐施工方案
- 四年級品德與社會下冊 第四單元 通信與生活 4 從看電視說起教學設計1 新人教版
- 路燈如何施工方案
- 防侵害教育課件
- 六年級上冊心理健康教育教案-1 向快樂出發(fā) |遼大版
- (新版)旅游接待業(yè)理論考試題庫(含各題型)
- 強迫癥ppt精品課件
- 《食品感官分析技術》最全完整版課件全套教學教程
- 三年級下冊數(shù)學課件-4.1 整體與部分 ▏滬教版 (共21張ppt)
- 2022年蕪湖職業(yè)技術學院職業(yè)適應性測試題庫及答案解析
- 14.1獸藥陳列環(huán)境溫濕度記錄表
- 遼寧省地方標準編制說明
- (完整word)燃油系統(tǒng)完整性(FMVSS 301)
- PRS-7741-102技術使用說明書
- 運動性猝死-PPT課件
- 裝飾裝修工程質量管理體系與措施
評論
0/150
提交評論