




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
考點09導(dǎo)數(shù)的綜合應(yīng)用考綱要求考綱要求運用導(dǎo)數(shù)研究函數(shù)的零點問題運用導(dǎo)數(shù)研究函數(shù)的恒成立問題運用導(dǎo)數(shù)研究實際應(yīng)用題運用導(dǎo)數(shù)研究定義型問題近三年高考情況分析近三年高考情況分析近幾年各地對導(dǎo)數(shù)的考查逐步增加,選擇、填空以及大題均有考查,難度也逐步增加,對于壓軸題重點考查1、通過導(dǎo)數(shù)研究函數(shù)的零點、恒成立問題等問題。2、利用導(dǎo)數(shù)研究函數(shù)的最值是函數(shù)模型的一個重要模塊,導(dǎo)數(shù)是求函數(shù)的一種重要工具,對函數(shù)的解析式?jīng)]有特殊的要求,無論解析式是復(fù)雜或者簡單,與三角函數(shù)還是與其他模塊的結(jié)合都可以運用導(dǎo)數(shù)求解,常考的知識點可以與立體幾何、三角函數(shù)、解析幾何等模塊結(jié)合,這是近幾年江蘇高考命題的趨勢考點總結(jié)考點總結(jié)在高考復(fù)習(xí)中要注意以下幾點:注意函數(shù)零點的判斷,以及函數(shù)恒成立問題的解題策略。導(dǎo)數(shù)的實際應(yīng)用關(guān)鍵是構(gòu)建函數(shù)模型。第一步:弄清問題,選取自變量,確立函數(shù)的取值范圍;第二步:構(gòu)建函數(shù),將實際問題轉(zhuǎn)化為數(shù)學(xué)問題;第三步:解決構(gòu)建數(shù)學(xué)問題;第四步:將解出的結(jié)果回歸實際問題,對結(jié)果進行取舍。在建立函數(shù)模型時,要注意函數(shù)的定義域,要積累常見函數(shù)模型如分式函數(shù)、三次函數(shù)、三角函數(shù)等知識點模塊的結(jié)合。三年高考真題三年高考真題1、【2019年高考天津理數(shù)】已知SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,∴SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,則SKIPIF1<0時,SKIPIF1<0取得最小值SKIPIF1<0,∴SKIPIF1<0,綜上可知,SKIPIF1<0的取值范圍是SKIPIF1<0.故選C.2、【2019年高考浙江】已知SKIPIF1<0,函數(shù)SKIPIF1<0.若函數(shù)SKIPIF1<0恰有3個零點,則A.a(chǎn)<–1,b<0 B.a(chǎn)<–1,b>0 C.a(chǎn)>–1,b<0 D.a(chǎn)>–1,b>0【答案】C【解析】當(dāng)x<0時,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x=b則y=f(x)﹣ax﹣b最多有一個零點;當(dāng)x≥0時,y=f(x)﹣ax﹣b=13x3-12(a+1)x2+ax﹣ax﹣b=13x3-12SKIPIF1<0,當(dāng)a+1≤0,即a≤﹣1時,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上單調(diào)遞增,則y=f(x)﹣ax﹣b最多有一個零點,不合題意;當(dāng)a+1>0,即a>﹣1時,令y′>0得x∈(a+1,+∞),此時函數(shù)單調(diào)遞增,令y′<0得x∈[0,a+1),此時函數(shù)單調(diào)遞減,則函數(shù)最多有2個零點.根據(jù)題意,函數(shù)y=f(x)﹣ax﹣b恰有3個零點?函數(shù)y=f(x)﹣ax﹣b在(﹣∞,0)上有一個零點,在[0,+∞)上有2個零點,如圖:∴b1-a<0且解得b<0,1﹣a>0,b>-16(a則a>–1,b<0.故選C.3、【2020年江蘇卷】某地準備在山谷中建一座橋梁,橋址位置的豎直截面圖如圖所示:谷底O在水平線MN上、橋AB與MN平行,SKIPIF1<0為鉛垂線(SKIPIF1<0在AB上).經(jīng)測量,左側(cè)曲線AO上任一點D到MN的距離SKIPIF1<0(米)與D到SKIPIF1<0的距離a(米)之間滿足關(guān)系式SKIPIF1<0;右側(cè)曲線BO上任一點F到MN的距離SKIPIF1<0(米)與F到SKIPIF1<0的距離b(米)之間滿足關(guān)系式SKIPIF1<0.已知點B到SKIPIF1<0的距離為40米.(1)求橋AB的長度;(2)計劃在谷底兩側(cè)建造平行于SKIPIF1<0的橋墩CD和EF,且CE為80米,其中C,E在AB上(不包括端點).橋墩EF每米造價k(萬元)、橋墩CD每米造價SKIPIF1<0(萬元)(k>0).問SKIPIF1<0為多少米時,橋墩CD與EF的總造價最低?【答案】(1)120米(2)SKIPIF1<0米【解析】(1)由題意得SKIPIF1<0SKIPIF1<0米(2)設(shè)總造價為SKIPIF1<0萬元,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0(0舍去)當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,因此當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值,答:當(dāng)SKIPIF1<0米時,橋墩CD與EF的總造價最低.4、【2020年江蘇卷】.已知關(guān)于x的函數(shù)SKIPIF1<0與SKIPIF1<0在區(qū)間D上恒有SKIPIF1<0.(1)若SKIPIF1<0,求h(x)的表達式;(2)若SKIPIF1<0,求k的取值范圍;(3)若SKIPIF1<0SKIPIF1<0求證:SKIPIF1<0.【解析】(1)由題設(shè)有SKIPIF1<0對任意的SKIPIF1<0恒成立.令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.因此SKIPIF1<0即SKIPIF1<0對任意的SKIPIF1<0恒成立,所以SKIPIF1<0,因此SKIPIF1<0.故SKIPIF1<0.(2)令SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,則SKIPIF1<0,即SKIPIF1<0,不符合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0,符合題意.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,則SKIPIF1<0,即SKIPIF1<0,符合題意.綜上所述,SKIPIF1<0.由SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0為增函數(shù),因為SKIPIF1<0,故存在SKIPIF1<0,使SKIPIF1<0,不符合題意.當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,符合題意.當(dāng)SKIPIF1<0,即SKIPIF1<0時,則需SKIPIF1<0,解得SKIPIF1<0.綜上所述,SKIPIF1<0的取值范圍是SKIPIF1<0.(3)因為SKIPIF1<0對任意SKIPIF1<0恒成立,SKIPIF1<0對任意SKIPIF1<0恒成立,等價于SKIPIF1<0對任意SKIPIF1<0恒成立.故SKIPIF1<0對任意SKIPIF1<0恒成立令SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,但SKIPIF1<0對任意的SKIPIF1<0恒成立.等價于SKIPIF1<0對任意的SKIPIF1<0恒成立.SKIPIF1<0的兩根為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0遞減,SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0.5、【2020年全國3卷】設(shè)函數(shù)SKIPIF1<0,曲線SKIPIF1<0在點(SKIPIF1<0,f(SKIPIF1<0))處的切線與y軸垂直.(1)求b.(2)若SKIPIF1<0有一個絕對值不大于1的零點,證明:SKIPIF1<0所有零點的絕對值都不大于1.【解析】(1)因為SKIPIF1<0,由題意,SKIPIF1<0,即SKIPIF1<0則SKIPIF1<0;(2)由(1)可得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,若SKIPIF1<0所有零點中存在一個絕對值大于1零點SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,由零點存在性定理知SKIPIF1<0在SKIPIF1<0上存在唯一一個零點SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上存在唯一一個零點,在SKIPIF1<0上不存在零點,此時SKIPIF1<0不存在絕對值不大于1的零點,與題設(shè)矛盾;當(dāng)SKIPIF1<0時,SKIPIF1<0,又SKIPIF1<0,由零點存在性定理知SKIPIF1<0在SKIPIF1<0上存在唯一一個零點SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上存在唯一一個零點,在SKIPIF1<0上不存在零點,此時SKIPIF1<0不存在絕對值不大于1的零點,與題設(shè)矛盾;綜上,SKIPIF1<0所有零點的絕對值都不大于1.6、【2020年天津卷】.已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(Ⅰ)當(dāng)SKIPIF1<0時,(i)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(ii)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間和極值;(Ⅱ)當(dāng)SKIPIF1<0時,求證:對任意的SKIPIF1<0,且SKIPIF1<0,有SKIPIF1<0.【解析】(Ⅰ)(i)當(dāng)k=6時,SKIPIF1<0,SKIPIF1<0.可得SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(ii)依題意,SKIPIF1<0.從而可得SKIPIF1<0,整理可得:SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.當(dāng)x變化時,SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0單調(diào)遞減極小值單調(diào)遞增所以,函數(shù)g(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞);g(x)的極小值為g(1)=1,無極大值.(Ⅱ)證明:由SKIPIF1<0,得SKIPIF1<0.對任意的SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.①令SKIPIF1<0.當(dāng)x>1時,SKIPIF1<0,由此可得SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以當(dāng)t>1時,SKIPIF1<0,即SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.②由(Ⅰ)(ii)可知,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0③由①②③可得SKIPIF1<0.所以,當(dāng)SKIPIF1<0時,任意的SKIPIF1<0,且SKIPIF1<0,有SKIPIF1<0.7、【2020年浙江卷】.已知SKIPIF1<0,函數(shù)SKIPIF1<0,其中e=2.71828…為自然對數(shù)的底數(shù).(Ⅰ)證明:函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點;(Ⅱ)記x0為函數(shù)SKIPIF1<0在SKIPIF1<0上的零點,證明:(ⅰ)SKIPIF1<0;(ⅱ)SKIPIF1<0.【解析】(I)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,所以由零點存在定理得SKIPIF1<0在SKIPIF1<0上有唯一零點;(II)(i)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0一方面:SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,另一方面:SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0成立,因此只需證明當(dāng)SKIPIF1<0時SKIPIF1<0,因為SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,綜上,SKIPIF1<0.(ii)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,只需證明SKIPIF1<0,即只需證明SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0成立,因此SKIPIF1<0.8、【2019年高考全國Ⅰ卷理數(shù)】已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)數(shù).證明:(1)SKIPIF1<0在區(qū)間SKIPIF1<0存在唯一極大值點;(2)SKIPIF1<0有且僅有2個零點.【解析】(1)設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,而SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0有唯一零點,設(shè)為SKIPIF1<0.則當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,故SKIPIF1<0在SKIPIF1<0存在唯一極大值點,即SKIPIF1<0在SKIPIF1<0存在唯一極大值點.(2)SKIPIF1<0的定義域為SKIPIF1<0.(i)當(dāng)SKIPIF1<0時,由(1)知,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,而SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,從而SKIPIF1<0是SKIPIF1<0在SKIPIF1<0的唯一零點.(ii)當(dāng)SKIPIF1<0時,由(1)知,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,而SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.又SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0.從而,SKIPIF1<0在SKIPIF1<0沒有零點.(iii)當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減.而SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0有唯一零點.(iv)當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0<0,從而SKIPIF1<0在SKIPIF1<0沒有零點.綜上,SKIPIF1<0有且僅有2個零點.9、【2019年高考全國Ⅱ卷理數(shù)】已知函數(shù)SKIPIF1<0.(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點;(2)設(shè)x0是f(x)的一個零點,證明曲線y=lnx在點A(x0,lnx0)處的切線也是曲線SKIPIF1<0的切線.【解析】(1)f(x)的定義域為(0,1)SKIPIF1<0(1,+∞).因為SKIPIF1<0,所以SKIPIF1<0在(0,1),(1,+∞)單調(diào)遞增.因為f(e)=SKIPIF1<0,SKIPIF1<0,所以f(x)在(1,+∞)有唯一零點x1,即f(x1)=0.又SKIPIF1<0,SKIPIF1<0,故f(x)在(0,1)有唯一零點SKIPIF1<0.綜上,f(x)有且僅有兩個零點.(2)因為SKIPIF1<0,故點B(–lnx0,SKIPIF1<0)在曲線y=ex上.由題設(shè)知SKIPIF1<0,即SKIPIF1<0,故直線AB的斜率SKIPIF1<0.曲線y=ex在點SKIPIF1<0處切線的斜率是SKIPIF1<0,曲線SKIPIF1<0在點SKIPIF1<0處切線的斜率也是SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線也是曲線y=ex的切線.10、【2019年高考天津理數(shù)】設(shè)函數(shù)SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(Ⅰ)求SKIPIF1<0的單調(diào)區(qū)間;(Ⅱ)當(dāng)SKIPIF1<0時,證明SKIPIF1<0;(Ⅲ)設(shè)SKIPIF1<0為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點,其中SKIPIF1<0,證明SKIPIF1<0.【解析】(Ⅰ)由已知,有SKIPIF1<0.因此,當(dāng)SKIPIF1<0SKIPIF1<0時,有SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0SKIPIF1<0時,有SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0單調(diào)遞增.所以,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0.(Ⅱ)證明:記SKIPIF1<0.依題意及(Ⅰ),有SKIPIF1<0,從而SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0.因此,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,進而SKIPIF1<0.所以,當(dāng)SKIPIF1<0時,SKIPIF1<0.(Ⅲ)證明:依題意,SKIPIF1<0,即SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0.由SKIPIF1<0及(Ⅰ),得SKIPIF1<0.由(Ⅱ)知,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),因此SKIPIF1<0.又由(Ⅱ)知,SKIPIF1<0,故SKIPIF1<0.所以,SKIPIF1<0.11、【2018年高考全國Ⅰ卷理數(shù)】已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0存在兩個極值點SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.(i)若SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減.(ii)若SKIPIF1<0,令SKIPIF1<0得,SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.(2)由(1)知,SKIPIF1<0存在兩個極值點當(dāng)且僅當(dāng)SKIPIF1<0.由于SKIPIF1<0的兩個極值點SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0.由于SKIPIF1<0,所以SKIPIF1<0等價于SKIPIF1<0.設(shè)函數(shù)SKIPIF1<0,由(1)知,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,從而當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0.二年模擬試題二年模擬試題題型一、零點問題1、(北京市昌平區(qū)2019年高三月考)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且滿足SKIPIF1<0,若函數(shù)SKIPIF1<0有6個零點,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】函數(shù)SKIPIF1<0有6個零點,等價于函數(shù)SKIPIF1<0與SKIPIF1<0有6個交點,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0遞減,SKIPIF1<0的極大值為:SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如下圖,SKIPIF1<0與SKIPIF1<0的圖象有6個交點,須SKIPIF1<0,表示為區(qū)間形式即SKIPIF1<0.故選C.2、(北京市門頭溝區(qū)2019年高三年級月考)函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,(其中SKIPIF1<0為自然對數(shù)的底數(shù),SKIPIF1<0)若函數(shù)SKIPIF1<0有兩個零點,則實數(shù)SKIPIF1<0取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因此當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有兩個零點,選C.3、(2020屆浙江省臺州市溫嶺中學(xué)3月模擬)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有零點,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】不妨設(shè)SKIPIF1<0,SKIPIF1<0為函數(shù)SKIPIF1<0的兩個零點,其中SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,可令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0.則SKIPIF1<0的最大值為SKIPIF1<0,此時SKIPIF1<0,還應(yīng)滿足SKIPIF1<0,顯然SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0.故選:B.4、(2020屆山東省濱州市三校高三上學(xué)期聯(lián)考)已知函數(shù)(e為自然對數(shù)的底),若且有四個零點,則實數(shù)m的取值可以為()A.1 B.e C.2e D.3e【答案】CD【解析】因為,可得,即為偶函數(shù),由題意可得時,有兩個零點,當(dāng)時,,即時,,由,可得,由相切,設(shè)切點為,的導(dǎo)數(shù)為,可得切線的斜率為,可得切線的方程為,由切線經(jīng)過點,可得,解得:或(舍去),即有切線的斜率為,故,故選:CD.5、.(2020屆山東實驗中學(xué)高三上期中)設(shè)定義在上的函數(shù)滿足,且當(dāng)時,.己知存在,且為函數(shù)(為自然對數(shù)的底數(shù))的一個零點,則實數(shù)的取值可能是()A. B. C. D.【答案】BCD【解析】令函數(shù),因為,,為奇函數(shù),當(dāng)時,,在上單調(diào)遞減,在上單調(diào)遞減.存在,得,,即,;,為函數(shù)的一個零點;當(dāng)時,,函數(shù)在時單調(diào)遞減,由選項知,取,又,要使在時有一個零點,只需使,解得,的取值范圍為,故選:.6、(2020·山東省淄博實驗中學(xué)高三上期末)關(guān)于函數(shù),下列判斷正確的是()A.是的極大值點B.函數(shù)有且只有1個零點C.存在正實數(shù),使得成立D.對任意兩個正實數(shù),,且,若,則.【答案】BD【解析】A.函數(shù)的的定義域為(0,+∞),函數(shù)的導(dǎo)數(shù)f′(x),∴(0,2)上,f′(x)<0,函數(shù)單調(diào)遞減,(2,+∞)上,f′(x)>0,函數(shù)單調(diào)遞增,∴x=2是f(x)的極小值點,即A錯誤;B.y=f(x)﹣xlnx﹣x,∴y′10,函數(shù)在(0,+∞)上單調(diào)遞減,且f(1)﹣1ln1﹣1=1>0,f(2)﹣2ln2﹣2=ln2﹣1<0,∴函數(shù)y=f(x)﹣x有且只有1個零點,即B正確;C.若f(x)>kx,可得k,令g(x),則g′(x),令h(x)=﹣4+x﹣xlnx,則h′(x)=﹣lnx,∴在x∈(0,1)上,函數(shù)h(x)單調(diào)遞增,x∈(1,+∞)上函數(shù)h(x)單調(diào)遞減,∴h(x)?h(1)<0,∴g′(x)<0,∴g(x)在(0,+∞)上函數(shù)單調(diào)遞減,函數(shù)無最小值,∴不存在正實數(shù)k,使得f(x)>kx恒成立,即C不正確;D.令t∈(0,2),則2﹣t∈(0,2),2+t>2,令g(t)=f(2+t)﹣f(2﹣t)ln(2+t)ln(2﹣t)ln,則g′(t)0,∴g(t)在(0,2)上單調(diào)遞減,則g(t)<g(0)=0,令x1=2﹣t,由f(x1)=f(x2),得x2>2+t,則x1+x2>2﹣t+2+t=4,當(dāng)x2≥4時,x1+x2>4顯然成立,∴對任意兩個正實數(shù)x1,x2,且x2>x1,若f(x1)=f(x2),則x1+x2>4,故D正確故正確的是BD,故選:BD.7、(2020屆浙江省嘉興市3月模擬)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若存在實數(shù)SKIPIF1<0使SKIPIF1<0在SKIPIF1<0上有2個零點,則SKIPIF1<0的取值范圍為________.【答案】SKIPIF1<0.【解析】已知實數(shù)SKIPIF1<0使SKIPIF1<0在SKIPIF1<0上有2個零點,等價于SKIPIF1<0與SKIPIF1<0的函數(shù)圖象在SKIPIF1<0上有2個交點,顯然SKIPIF1<0與x軸的交點為SKIPIF1<0,SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱,當(dāng)SKIPIF1<0時,若要有2個交點,由數(shù)形結(jié)合知m一定小于e,即SKIPIF1<0;當(dāng)SKIPIF1<0時,若要有2個交點,須存在a使得SKIPIF1<0在SKIPIF1<0有兩解,所以SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,顯然存在這樣的a使上述不等式成立;由數(shù)形結(jié)合知m須大于SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0與x軸交點的橫坐標(biāo)SKIPIF1<0,即SKIPIF1<0綜上所述,m的范圍為SKIPIF1<0.故答案為:SKIPIF1<08、(2020屆江蘇省南通市海門中學(xué)高三上學(xué)期10月檢測)若函數(shù)SKIPIF1<0,SKIPIF1<0存在零點,則實數(shù)a的取值范圍為____【答案】SKIPIF1<0【解析】因為函數(shù)SKIPIF1<0,SKIPIF1<0存在零點,等價于SKIPIF1<0,在SKIPIF1<0上有解,即SKIPIF1<0在SKIPIF1<0上有解,即函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有交點,令SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0;故SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,所以SKIPIF1<0故答案為:SKIPIF1<09、(2020·山東省淄博實驗中學(xué)高三上期末)已知函數(shù).若函數(shù)在上無零點,則的最小值為________.【答案】【解析】因為在區(qū)間上恒成立不可能,故要使函數(shù)在上無零點,只要對任意的,恒成立,即對任意的,恒成立.令,,則,再令,,則,故在上為減函數(shù),于是,從而,于是在上為增函數(shù),所以,故要使恒成立,只要,綜上,若函數(shù)在上無零點,則的最小值為.故答案為:10、(2020屆山東省煙臺市高三上期末)已知函數(shù),其中.(1)求函數(shù)的單調(diào)區(qū)間;(2)討論函數(shù)零點的個數(shù);(3)若存在兩個不同的零點,求證:.【解析】(1)函數(shù)的定義域為,,令,得或,因為,當(dāng)或時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,所以的增區(qū)間為,;減區(qū)間為(2)取,則當(dāng)時,,,所以;又因為,由(1)可知在上單調(diào)遞增,因此,當(dāng),恒成立,即在上無零點.;下面討論的情況:①當(dāng)時,因為在單調(diào)遞減,單調(diào)遞增,且,,,根據(jù)零點存在定理,有兩個不同的零點;②當(dāng)時,由在單調(diào)遞減,單調(diào)遞增,且,此時有唯一零點;③若,由在單調(diào)遞減,單調(diào)遞增,,此時無零點;綜上,若,有兩個不同的零點;若,有唯一零點;若,無零點(3)證明:由(2)知,,且,構(gòu)造函數(shù),,則,令,,因為當(dāng)時,,,所以又,所以恒成立,即在單調(diào)遞增,于是當(dāng)時,,即,因為,所,又,所以,因為,,且在單調(diào)遞增,所以由,可得,即題型二恒成立問題1、(2020屆山東省泰安市高三上期末)設(shè)函數(shù)在定義域(0,+∞)上是單調(diào)函數(shù),,若不等式對恒成立,則實數(shù)a的取值范圍是______.【答案】【解析】由題意可設(shè),則,∵,∴,∴,∴,∴,由得,∴對恒成立,令,,則,由得,∴在上單調(diào)遞減,在單調(diào)遞增,∴,∴,故答案為:.2、(2020·山東省淄博實驗中學(xué)高三上期末)設(shè)函數(shù),.(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)若曲線在點處的切線與直線平行.①求,的值;②求實數(shù)的取值范圍,使得對恒成立.【解析】(1)當(dāng),時,,則.當(dāng)時,;當(dāng)時,;所以的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(2)①因為,所以,依題設(shè)有,即.解得.②,.對恒成立,即對恒成立.令,則有.當(dāng)時,當(dāng)時,,所以在上單調(diào)遞增.所以,即當(dāng)時,;當(dāng)時,當(dāng)時,,所以在上單調(diào)遞減,故當(dāng)時,,即當(dāng)時,不恒成立.綜上,.3、(2020·浙江溫州中學(xué)3月高考模擬)已知SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0時,求證:對于SKIPIF1<0,SKIPIF1<0恒成立;(3)若存在SKIPIF1<0,使得當(dāng)SKIPIF1<0時,恒有SKIPIF1<0成立,試求SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.解得SKIPIF1<0.當(dāng)SKIPIF1<0時,解得SKIPIF1<0.所以SKIPIF1<0單調(diào)減區(qū)間為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.(2)設(shè)SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,由題意,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立.SKIPIF1<0SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,SKIPIF1<0單調(diào)遞減.又SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0.∴對于SKIPIF1<0,SKIPIF1<0恒成立.(3)因為SKIPIF1<0SKIPIF1<0.由(2)知,當(dāng)SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 出口寵物食品合同范本
- 倉庫租賃 配送合同范本
- 主力商家合同范本
- 2025年超大型特厚板軋機項目建議書
- 第六課 友誼之樹常青 教學(xué)設(shè)計-2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 包裝買賣合同范本
- 北京合伙合同范本咨詢
- 《認識面積》(教學(xué)設(shè)計)-2023-2024學(xué)年三年級下冊數(shù)學(xué)人教版
- 信用擔(dān)保借款合同范本你
- 制造珠寶生產(chǎn)訂單合同范本
- 2025年重慶三峽擔(dān)保集團招聘筆試參考題庫含答案解析
- 《快遞運營》課件-項目一 快遞運營認知
- 2024糖尿病酮癥酸中毒診斷和治療課件
- GA/T 765-2020人血紅蛋白檢測金標(biāo)試劑條法
- 膠粘劑基礎(chǔ)知識及產(chǎn)品詳解(課堂PPT)
- 完整版三措兩案范文
- 鐵路總公司近期處理的七起突出質(zhì)量問題的通報
- 常用洪水預(yù)報模型介紹
- 援外項目鋼結(jié)構(gòu)運輸包裝作業(yè)指導(dǎo)書(共13頁)
- 髖關(guān)節(jié)置換術(shù)男性患者留置尿管最佳時機探析和對策
- [爆笑小品校園劇本7人]爆笑小品校園劇本
評論
0/150
提交評論