湖南省常德市西洞庭管理區(qū)第一中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理上學(xué)期期末試卷含解析_第1頁
湖南省常德市西洞庭管理區(qū)第一中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理上學(xué)期期末試卷含解析_第2頁
湖南省常德市西洞庭管理區(qū)第一中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理上學(xué)期期末試卷含解析_第3頁
湖南省常德市西洞庭管理區(qū)第一中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理上學(xué)期期末試卷含解析_第4頁
湖南省常德市西洞庭管理區(qū)第一中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理上學(xué)期期末試卷含解析_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖南省常德市西洞庭管理區(qū)第一中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理上學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知三棱錐S﹣ABC,滿足SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,若該三棱錐外接球的半徑為,Q是外接球上一動(dòng)點(diǎn),則點(diǎn)Q到平面ABC的距離的最大值為()A.3 B.2 C. D.參考答案:D【考點(diǎn)】MK:點(diǎn)、線、面間的距離計(jì)算.【分析】由題意,三棱錐的外接球即為以SA,SB,SC為長寬高的正方體的外接球,求出球心到平面ABC的距離,即可求出點(diǎn)Q到平面ABC的距離的最大值.【解答】解:∵三棱錐S﹣ABC中,SA⊥SB,SB⊥SC,SC⊥SA,且SA=SB=SC,∴三棱錐的外接球即為以SA,SB,SC為長寬高的正方體的外接球,∵該三棱錐外接球的半徑為,∴正方體的體對角線長為2,∴球心到平面ABC的距離為×=∴點(diǎn)Q到平面ABC的距離的最大值為+=.故選:D.2.已知,則()A.4 B.2 C.1 D.8參考答案:C【分析】先求導(dǎo)數(shù),代數(shù)數(shù)據(jù)1,計(jì)算,再代入數(shù)據(jù)2計(jì)算【詳解】故答案選C【點(diǎn)睛】本題考查了導(dǎo)數(shù)的計(jì)算,意在考查學(xué)生的計(jì)算能力.3.命題p:若,則,q是p的逆命題,則(

)A.p真,q真 B.p真,q假 C.p假,q真 D.p假,q假參考答案:C由題意,,所以,得,所以命題為假命題,又因?yàn)槭堑哪婷},所以命題:若,則為真命題,故選C.4.已知向量,,若向量與向量互相垂直,則實(shí)數(shù)的值是(

).A. B. C. D.參考答案:D∵,,∴,,∵與互相垂直,∴,解得:.故選.5.等差數(shù)列{an}中,a2+a6=8,a3+a4=3,那么它的公差是(

).A.4 B.5 C.6

D.7參考答案:B6.75名志愿者分到3所學(xué)校支教,每個(gè)學(xué)校至少去一名志愿者,則不同的分派方法有(

)A.150種

B.180種

C.200種

D.280種

參考答案:A略7.有三個(gè)球,一個(gè)球內(nèi)切于正方體的各個(gè)面,另一個(gè)球切正方體的各條棱,第三個(gè)球過正方體的各個(gè)頂點(diǎn)(都是同一正方體),則這三個(gè)球的體積之比為(

參考答案:C略8.已知,,且,若恒成立,則實(shí)數(shù)的取值范圍是()A.或 B.或C. D.參考答案:D9.設(shè),且恒成立,則的最大值是(

)A.

B.

C.

D.參考答案:C10.若x,x+1,x+2是鈍角三角形的三邊,則實(shí)數(shù)x的取值范圍是(

).A.0<x<3

B.1<x<3

C.3<x<4

D.4<x<6參考答案:B略二、填空題:本大題共7小題,每小題4分,共28分11.已知是定義在上且周期為3的函數(shù),當(dāng)時(shí),,若函數(shù)在區(qū)間上有10個(gè)零點(diǎn)(互不相同),則實(shí)數(shù)的取值范圍是___.參考答案:略12.已知{an}是等比數(shù)列,a5==2,則a7=

.參考答案:1【考點(diǎn)】88:等比數(shù)列的通項(xiàng)公式.【分析】利用等比數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)和公比,由此能求出a7的值.【解答】解:∵{an}是等比數(shù)列,,∴,解得,a7==1.故答案為:1.13.已知函數(shù)在點(diǎn)處的切線為y=2x-1,則函數(shù)在點(diǎn)處的切線方程為

.參考答案:14.數(shù)列{an}滿足,(),則

.參考答案:數(shù)列{an}滿足,,變形得到則。

15.如圖,是一程序框圖,則輸出結(jié)果為________.參考答案:16.等差數(shù)列{an}中,若a3+a7=16,則a5=_________;參考答案:8略17.參數(shù)方程(t為參數(shù)),化為一般方程為.參考答案:x+y﹣2=0【考點(diǎn)】QH:參數(shù)方程化成普通方程.【分析】參數(shù)方程消去參數(shù)t,能求出其一般方程.【解答】解:∵參數(shù)方程(t為參數(shù)),∴消去參數(shù)t,得:x=1+(1﹣y),整理,得一般方程為:x+y﹣2=0.故答案為:x+y﹣2=0.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分12分)在△ABC中,已知AC=3,三個(gè)內(nèi)角A,B,C成等差數(shù)列.(1)若cosC=,求AB;

(2)求△ABC的面積的最大值.參考答案:(1)∵A,B,C成等差數(shù)列,∴2B=A+C,又A+B+C=,∴B=,由cosC=,求得sinC=,由正弦定理得:,∴AB=2.(2)設(shè)角A,B,C的對邊為a,b,c,由余弦定理得:,∴≥2ac,∴ac≤9,∴=ac·sinB≤,∴△ABC面積的最大值為.19.已知橢圓的離心率,且經(jīng)過點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)直線過橢圓的上焦點(diǎn),交橢圓于,兩點(diǎn),已知,,若,求直線的斜率的值.參考答案:(1)(2)20.已知二次函數(shù)f(x)=x2+2ax+2a+1,若對任意的x∈[﹣1,1]都有f(x)≥1恒成立,求a的范圍.參考答案:【考點(diǎn)】3R:函數(shù)恒成立問題;3W:二次函數(shù)的性質(zhì).【分析】法一:利用函數(shù)的對稱軸與區(qū)間的關(guān)系,列出不等式組區(qū)間即可.法二:利用恒成立分離a,通過x的范圍討論,轉(zhuǎn)化為基本不等式區(qū)間最值,推出結(jié)果.【解答】(本小題滿分12分)解:法一:根據(jù)題意,得,解得a≥1或0≤a<1.∴a的范圍為[0,+∞).法二:若對任意的有f(x)≥1恒成立,則2a(x+1)≥﹣x2對任意的恒成立,當(dāng)x=﹣1時(shí),a∈R,當(dāng)x≠﹣1時(shí)恒成立,令,x∈(﹣1,1],令t=x+1得:,易知ymax=0,故2a≥0,∴a的范圍為[0,+∞).21.(本小題滿分10分)(1)已知a>b>c,且a+b+c=0,用分析法求證:(2)先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論,并給出證明.參考答案:22.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為,且過點(diǎn).(1)求t的值;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論