2024學年湖北省宜昌縣域高中協(xié)同發(fā)展共合體數(shù)學高三上期末檢測試題含解析_第1頁
2024學年湖北省宜昌縣域高中協(xié)同發(fā)展共合體數(shù)學高三上期末檢測試題含解析_第2頁
2024學年湖北省宜昌縣域高中協(xié)同發(fā)展共合體數(shù)學高三上期末檢測試題含解析_第3頁
2024學年湖北省宜昌縣域高中協(xié)同發(fā)展共合體數(shù)學高三上期末檢測試題含解析_第4頁
2024學年湖北省宜昌縣域高中協(xié)同發(fā)展共合體數(shù)學高三上期末檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024學年湖北省宜昌縣域高中協(xié)同發(fā)展共合體數(shù)學高三上期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.2.已知函數(shù),則()A.2 B.3 C.4 D.53.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.4.如圖是一個算法流程圖,則輸出的結(jié)果是()A. B. C. D.5.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.37.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.8.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.9.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或910.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.11.已知向量,,若,則與夾角的余弦值為()A. B. C. D.12.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦點坐標是_______________,漸近線方程是_______________.14.若,則的展開式中含的項的系數(shù)為_______.15.已知復數(shù)對應的點位于第二象限,則實數(shù)的范圍為______.16.函數(shù)的極大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.18.(12分)在數(shù)列和等比數(shù)列中,,,.(1)求數(shù)列及的通項公式;(2)若,求數(shù)列的前n項和.19.(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標原點作直線交曲線于點(異于),交曲線于點,求的最小值.20.(12分)定義:若數(shù)列滿足所有的項均由構(gòu)成且其中有個,有個,則稱為“﹣數(shù)列”.(1)為“﹣數(shù)列”中的任意三項,則使得的取法有多少種?(2)為“﹣數(shù)列”中的任意三項,則存在多少正整數(shù)對使得且的概率為.21.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0022.(10分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【題目詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調(diào),故為的最大值,故選:B.【題目點撥】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.2、A【解題分析】

根據(jù)分段函數(shù)直接計算得到答案.【題目詳解】因為所以.故選:.【題目點撥】本題考查了分段函數(shù)計算,意在考查學生的計算能力.3、C【解題分析】

由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【題目詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【題目點撥】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數(shù)學運算能力,難度一般.4、A【解題分析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【題目詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結(jié)果,故選A.【題目點撥】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題.5、A【解題分析】

設成立;反之,滿足,但,故選A.6、A【解題分析】

根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標,再求出向量的坐標,根據(jù)向量數(shù)量積的坐標運算求出結(jié)果.【題目詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【題目點撥】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標,再根據(jù)向量數(shù)量積的坐標運算可得結(jié)果,屬于簡單題.7、B【解題分析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.8、B【解題分析】

計算出的值,推導出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項和.【題目詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【題目點撥】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.9、C【解題分析】

由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【題目詳解】解:由題意可得,求得,或,故選:C.【題目點撥】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎題.10、D【解題分析】

由題知,又,代入計算可得.【題目詳解】由題知,又.故選:D【題目點撥】本題主要考查了三角函數(shù)的定義,誘導公式,二倍角公式的應用求值.11、B【解題分析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【題目詳解】依題意,,而,即,解得,則.故選:B.【題目點撥】本題考查向量的坐標運算、向量數(shù)量積的應用,考查運算求解能力以及化歸與轉(zhuǎn)化思想.12、D【解題分析】

將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【題目詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【題目點撥】本題考查了二項式定理展開式通項的簡單應用,指定項系數(shù)的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

通過雙曲線的標準方程,求解,,即可得到所求的結(jié)果.【題目詳解】由雙曲線,可得,,則,所以雙曲線的焦點坐標是,漸近線方程為:.故答案為:;.【題目點撥】本題主要考查了雙曲線的簡單性質(zhì)的應用,考查了運算能力,屬于容易題.14、【解題分析】

首先根據(jù)定積分的應用求出的值,進一步利用二項式的展開式的應用求出結(jié)果.【題目詳解】,根據(jù)二項式展開式通項:,令,解得,所以含的項的系數(shù).故答案為:【題目點撥】本題考查定積分,二項式的展開式的應用,主要考查學生的運算求解能力,屬于基礎題.15、【解題分析】

由復數(shù)對應的點,在第二象限,得,且,從而求出實數(shù)的范圍.【題目詳解】解:∵復數(shù)對應的點位于第二象限,∴,且,∴,故答案為:.【題目點撥】本題主要考查復數(shù)與復平面內(nèi)對應點之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎題.16、【解題分析】

先求函的定義域,再對函數(shù)進行求導,再解不等式得單調(diào)區(qū)間,進而求得極值點,即可求出函數(shù)的極大值.【題目詳解】函數(shù),,,令得,,當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減,當時,函數(shù)取到極大值,極大值為.故答案為:.【題目點撥】本題考查利用導數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意定義域優(yōu)先法則的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】

(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結(jié)論;(2)設分別為邊的中點,連,可得,,可得(或補角)是異面直線與所成的角,,可得,為二面角的平面角,即,設,求解,即可得出結(jié)論.【題目詳解】(1)證明:取中點連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設分別為邊的中點,則,(或補角)是異面直線與所成的角.設為邊的中點,則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標系.不妨設,由,易知點的坐標分別為則顯然向量是平面的法向量已知二面角為,設,則設平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【題目點撥】本題考查空間點、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學計算能力,屬于中檔題.18、(1),(2)【解題分析】

(1)根據(jù)與可求得,再根據(jù)等比數(shù)列的基本量求解即可.(2)由(1)可得,再利用錯位相減求和即可.【題目詳解】解:(1)依題意,,設數(shù)列的公比為q,由,可知,由,得,又,則,故,又由,得.(2)依題意.,①則,②①-②得,即,故.【題目點撥】本題主要考查了等比數(shù)列的基本量求解以及錯位相減求和等.屬于中檔題.19、(1)曲線的普通方程為:;曲線的普通方程為:(2)【解題分析】

(1)消去曲線參數(shù)方程中的參數(shù),求得和的普通方程.(2)設出過原點的直線的極坐標方程,代入曲線的極坐標方程,求得的表達式,結(jié)合三角函數(shù)值域的求法,求得的最小值.【題目詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設過原點的直線的極坐標方程為;由得,所以曲線的極坐標方程為在曲線中,.由得曲線的極坐標方程為,所以而到直線與曲線的交點的距離為,因此,即的最小值為.【題目點撥】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標方程化為極坐標方程,考查極坐標系下距離的有關(guān)計算,屬于中檔題.20、(1)16;(2)115.【解題分析】

(1)易得使得的情況只有“”,“”兩種,再根據(jù)組合的方法求解兩種情況分別的情況數(shù)再求和即可.(2)易得“”共有種,“”共有種.再根據(jù)古典概型的方法可知,利用組合數(shù)的計算公式可得,當時根據(jù)題意有,共個;當時求得,再根據(jù)換元根據(jù)整除的方法求解滿足的正整數(shù)對即可.【題目詳解】解:(1)三個數(shù)乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數(shù)原理得:為“﹣數(shù)列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數(shù)列”中任取三項共有種,根據(jù)古典概型有:,再根據(jù)組合數(shù)的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數(shù),可解得,,根據(jù)可知,,,,根據(jù)可知,,(否則),下設,則由于為正整數(shù)知必為正整數(shù),,,化簡上式關(guān)系式可以知道:,均為偶數(shù),設,則,由于中必存在偶數(shù),只需中存在數(shù)為的倍數(shù)即可,,.檢驗:符合題意,共有個,綜上所述:共有個數(shù)對符合題意.【題目點撥】本題主要考查了排列組合的基本方法,同時也考查了組合數(shù)的運算以及整數(shù)的分析方法等,需要根據(jù)題意21、(1),,,;(2)【解題分析】

(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關(guān)系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數(shù),由古典概型概率公式,即可求解.【題目詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.【題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論