版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古自治區(qū)烏蘭察布市集寧一中2024屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.動(dòng)點(diǎn)P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.2.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.下列命題中正確的是()A.函數(shù)最小值為2.B.函數(shù)的最小值為2.C.函數(shù)的最小值為D.函數(shù)的最大值為4.已知點(diǎn)是橢圓上的一點(diǎn),點(diǎn),則的最小值為A. B.C. D.5.平面與平面平行的充分條件可以是()A.平面內(nèi)有一條直線與平面平行B.平面內(nèi)有兩條直線分別與平面平行C.平面內(nèi)有無數(shù)條直線分別與平面平行D平面內(nèi)有兩條相交直線分別與平面平行6.已知向量,,且,則實(shí)數(shù)等于()A1 B.2C. D.7.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.8.若兩個(gè)不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確9.已知拋物線的焦點(diǎn)為,在拋物線上有一點(diǎn),滿足,則的中點(diǎn)到軸的距離為()A. B.C. D.10.在長(zhǎng)方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.11.設(shè)是數(shù)列的前項(xiàng)和,已知,則數(shù)列()A.是等比數(shù)列,但不是等差數(shù)列 B.是等差數(shù)列,但不是等比數(shù)列C.是等比數(shù)列,也是等差數(shù)列 D.既不是等差數(shù)列,也不是等比數(shù)列12.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知一組數(shù)據(jù)的平均數(shù)為4,方差為3,若另一組數(shù)據(jù)的平均數(shù)為10,則該組數(shù)據(jù)的方差為_______.14.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為________.15.如圖,已知,分別是橢圓的左、右焦點(diǎn),現(xiàn)以為圓心作一個(gè)圓恰好經(jīng)過橢圓的中心并且交橢圓于點(diǎn),.若過點(diǎn)的直線是圓的切線,則橢圓的離心率為_________16.將一枚質(zhì)地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點(diǎn)數(shù)之和為的概率是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)當(dāng)時(shí),求函數(shù)的單調(diào)性;(2)若對(duì),不等式在上恒成立,求的取值范圍.18.(12分)已知圓C的圓心為,一條直徑的兩個(gè)端點(diǎn)分別在x軸和y軸上(1)求圓C的方程;(2)直線l:與圓C相交于M,N兩點(diǎn),P(異于點(diǎn)M,N)為圓C上一點(diǎn),求△PMN面積的最大值19.(12分)已知數(shù)列滿足(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和20.(12分)某保險(xiǎn)公司根據(jù)官方公布的歷年?duì)I業(yè)收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序號(hào)x12345678910營(yíng)業(yè)收入y(億元)0.529.3633.6132352571912120716822135由表1,得到下面的散點(diǎn)圖:根據(jù)已有的函數(shù)知識(shí),某同學(xué)選用二次函數(shù)模型(b和a是待定參數(shù))來擬合y和x的關(guān)系.這時(shí),可以對(duì)年份序號(hào)做變換,即令,得,由表1可得變換后的數(shù)據(jù)見表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根據(jù)表中數(shù)據(jù),建立y關(guān)于t的回歸方程(系數(shù)精確到個(gè)位數(shù));(2)根據(jù)(1)中得到的回歸方程估計(jì)2021年的營(yíng)業(yè)收入,以及營(yíng)業(yè)收入首次超過4000億元的年份.附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.參考數(shù)據(jù):.21.(12分)已知數(shù)列滿足且.(1)證明數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.22.(10分).在直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線相交于A,B兩點(diǎn)(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】設(shè),根據(jù)兩點(diǎn)間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【題目詳解】設(shè),圓化簡(jiǎn)為,即圓心為(0,4),半徑為,所以點(diǎn)P到圓心的距離,令,則,令,,為開口向上,對(duì)稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B2、A【解題分析】根據(jù)得出,根據(jù)充分必要條件的定義可判斷.【題目詳解】解:∵,向量,,∴,即,根據(jù)充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.3、D【解題分析】根據(jù)基本不等式知識(shí)對(duì)選項(xiàng)逐一判斷【題目詳解】對(duì)于A,時(shí)為負(fù)值,故A錯(cuò)誤對(duì)于B,,而無解,無法取等,故B錯(cuò)誤對(duì)于,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,故,D正確,C錯(cuò)誤故選:D4、D【解題分析】設(shè),則,.所以當(dāng)時(shí),的最小值為.故選D.5、D【解題分析】根據(jù)平面與平面平行的判定定理可判斷.【題目詳解】對(duì)A,若平面內(nèi)有一條直線與平面平行,則平面與平面可能平行或相交,故A錯(cuò)誤;對(duì)B,若平面內(nèi)有兩條直線分別與平面平行,若這兩條直線平行,則平面與平面可能平行或相交,故B錯(cuò)誤;對(duì)C,若平面內(nèi)有無數(shù)條直線分別與平面平行,若這無數(shù)條直線互相平行,則平面與平面可能平行或相交,故C錯(cuò)誤;對(duì)D,若平面內(nèi)有兩條相交直線分別與平面平行,則根據(jù)平面與平面平行的判定定理可得平面與平面平行,故D正確.故選:D.6、C【解題分析】利用空間向量垂直的坐標(biāo)表示計(jì)算即可得解【題目詳解】因向量,,且,則,解得,所以實(shí)數(shù)等于.故選:C7、A【解題分析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進(jìn)行求解.【題目詳解】因?yàn)橹本€的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題8、B【解題分析】由向量數(shù)量積為0可求.【題目詳解】∵,,∴,∴,∴,故選:B.9、A【解題分析】設(shè)點(diǎn),利用拋物線的定義求出的值,可求得點(diǎn)的橫坐標(biāo),即可得解.【題目詳解】設(shè)點(diǎn),易知拋物線的焦點(diǎn)為,由拋物線的定義可得,得,所以,點(diǎn)的橫坐標(biāo)為,故點(diǎn)到軸的距離為.故選:A.10、C【解題分析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【題目詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長(zhǎng)方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因?yàn)?,所?故選:C.11、B【解題分析】根據(jù)與的關(guān)系求出通項(xiàng),然后可知答案.【題目詳解】當(dāng)時(shí),,當(dāng)時(shí),,綜上,的通項(xiàng)公式為,數(shù)列為等差數(shù)列同理,由等比數(shù)列定義可判斷數(shù)列不是等比數(shù)列.故選:B12、A【解題分析】由橢圓的面積為和兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,得到求解.【題目詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、12【解題分析】根據(jù)題意,先通過原始數(shù)據(jù)的平均數(shù)、方差及新數(shù)據(jù)的平均數(shù)求出k,進(jìn)而求出新數(shù)據(jù)的方差.【題目詳解】由題意,原式數(shù)據(jù)的平均數(shù)和方程分別為:,則新數(shù)據(jù)的平均數(shù),于是新數(shù)據(jù)的方差.故答案為:12.14、2【解題分析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【題目詳解】因?yàn)樵摻M數(shù)據(jù)的極差為5,,所以,解得.因?yàn)?,所以該組數(shù)據(jù)的方差為故答案為:.15、##【解題分析】根據(jù)給定條件探求出橢圓長(zhǎng)軸長(zhǎng)與其焦距的關(guān)系即可計(jì)算作答.【題目詳解】設(shè)橢圓長(zhǎng)軸長(zhǎng)為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點(diǎn)在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:16、【解題分析】將向上的點(diǎn)數(shù)記作,先計(jì)算出所有的基本事件數(shù),并列舉出事件“出現(xiàn)向上的點(diǎn)數(shù)之和為”所包含的基本事件,然后利用古典概型的概率公式可計(jì)算出所求事件的概率.【題目詳解】將骰子先后拋擲次,出現(xiàn)向上的點(diǎn)數(shù)記作,則基本事件數(shù)為,向上的點(diǎn)數(shù)之和為這一事件記為,則事件所包含的基本事件有:、、,共個(gè)基本事件,因此,.故答案為:.【題目點(diǎn)撥】本題考查利用古典概型的概率公式計(jì)算概率,解題時(shí)一般要列舉出相應(yīng)的基本事件,遵循不重不漏的基本原則,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為,(2)【解題分析】(1)求導(dǎo)可得,分析正負(fù)即得解;(2)轉(zhuǎn)化在上恒成立為,分析函數(shù)單調(diào)性,轉(zhuǎn)化為f(1)≤1f(-1)≤1,求解即可【小問1詳解】當(dāng)時(shí),令,解得,,當(dāng)變化時(shí),,的變化情況如下表:↘極小值↗極大值↘極小值↗所以的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為,【小問2詳解】由條件可知,從而恒成立當(dāng)時(shí),;當(dāng)時(shí),因此函數(shù)在上的最大值是與兩者中的較大者為使對(duì)任意的,不等式在上恒成立,當(dāng)且僅當(dāng)f(1)≤1f(-1)≤1即在上恒成立所以,因此滿足條件的的取值范圍是18、(1);(2).【解題分析】(1)設(shè)直徑兩端點(diǎn)分別為,,由中點(diǎn)公式求參數(shù)a、b,進(jìn)而求半徑,即可得圓C的方程;(2)利用弦心距、半徑、弦長(zhǎng)的幾何關(guān)系求,再由圓心到直線l的距離求P到直線l的距離的最大值,即可得△PMN面積的最大值【小問1詳解】設(shè)直徑兩端點(diǎn)分別為,,則,,所以,,則圓C半徑,所以C的方程為【小問2詳解】圓心C到直線l的距離,則,點(diǎn)P到直線l的距離的最大值為,所以,△PMN面積的最大值為19、(1)證明見解析,(2)【解題分析】(1)根據(jù)等比數(shù)列的定義證明數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,進(jìn)而求解得答案;(2)根據(jù)錯(cuò)位相減法求和即可.【小問1詳解】解:數(shù)列滿足,∴數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,,即;∴【小問2詳解】解:,,,,20、(1);(2)估計(jì)2021年的營(yíng)業(yè)收入約為2518億元,估計(jì)營(yíng)業(yè)收入首次超過4000億元的年份為2024年.【解題分析】(1)根據(jù)的公式,將題干中的數(shù)據(jù)代入,即得解;(2)代入,可估計(jì)2021年的營(yíng)業(yè)收入;令,可求解的范圍,繼而得到的范圍,即得解【題目詳解】(1),,故回歸方程為.(2)2021年對(duì)應(yīng)的t的值為121,營(yíng)業(yè)收入,所以估計(jì)2021年的營(yíng)業(yè)收入約為2518億元.依題意有,解得,故.因?yàn)?,所以估?jì)營(yíng)業(yè)收入首次超過4000億元的年份序號(hào)為14,即2024年.21、(1)證明見解析;(2).【解題分析】(1)根據(jù)題意可得,根據(jù)等比數(shù)列的定義,即可得證;(2)由(1)可得,可得,利用累加法即可求得數(shù)列的通
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 非接觸性標(biāo)測(cè)系統(tǒng)引導(dǎo)下的房顫射頻消融術(shù)
- 2025年苯噻草胺合作協(xié)議書
- 全日制研究生定向培養(yǎng)協(xié)議書(2篇)
- 管理體系工作參考計(jì)劃范文5篇
- 攤位租賃市場(chǎng)租賃協(xié)議
- 旅游接待用車租賃合同
- 財(cái)產(chǎn)租賃合同樣書
- 2025年機(jī)械自動(dòng)采樣設(shè)備項(xiàng)目發(fā)展計(jì)劃
- 八年級(jí)語(yǔ)文上冊(cè)第五單元寫作說明事物要抓住特征教案新人教版1
- 2024年玉米種植、收購(gòu)、加工一體化服務(wù)合同3篇
- 2022年同等學(xué)力申碩英語(yǔ)學(xué)科模擬試題(4套全部有解析)
- 2023事業(yè)單位資料分析考試內(nèi)容:資料分析考試練習(xí)題
- ktv營(yíng)運(yùn)總監(jiān)崗位職責(zé)
- 三級(jí)配電箱巡檢記錄
- 《全國(guó)統(tǒng)一安裝工程預(yù)算定額》工程量計(jì)算規(guī)則
- GA/T 798-2008排油煙氣防火止回閥
- GA/T 1163-2014人類DNA熒光標(biāo)記STR分型結(jié)果的分析及應(yīng)用
- 《中國(guó)紅》詩(shī)歌朗誦
- 光伏工程啟動(dòng)驗(yàn)收鑒定書
- 承攬合同糾紛答辯狀范例2篇
- 招聘與錄用選擇題
評(píng)論
0/150
提交評(píng)論