




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省楚雄州永仁一中2024屆數(shù)學(xué)高二上期末質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:的右焦點(diǎn)為,過的直線(為常數(shù))與雙曲線在第一象限交于點(diǎn).若(為原點(diǎn)),則的離心率為()A. B.C. D.52.已知,且,則實(shí)數(shù)的值為()A. B.3C.4 D.63.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件4.設(shè)數(shù)列的前項(xiàng)和為,若,,,則、、、中,最大的是()A. B.C. D.5.在四棱錐中,底面ABCD是正方形,E為PD中點(diǎn),若,,,則()A. B.C. D.6.已知四面體,所有棱長均為2,點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則()A.1 B.2C.-1 D.-27.拋物線的焦點(diǎn)為,準(zhǔn)線為,焦點(diǎn)在準(zhǔn)線上的射影為點(diǎn),過任作一條直線交拋物線于兩點(diǎn),則為()A.銳角 B.直角C.鈍角 D.銳角或直角8.與的等差中項(xiàng)是()A. B.C. D.9.已知三棱錐O-ABC,點(diǎn)M,N分別為AB,OC的中點(diǎn),且,用表示,則等于()A. B.C. D.10.過橢圓+=1左焦點(diǎn)F1引直線交橢圓于A、B兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),則△ABF2的周長是()A.20 B.18C.10 D.1611.已知向量為平面的法向量,點(diǎn)在內(nèi),點(diǎn)在外,則點(diǎn)到平面的距離為()A. B.C. D.12.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正三角形邊長為a,則該三角形內(nèi)任一點(diǎn)到三邊的距離之和為定值.類比上述結(jié)論,在棱長為a的正四面體內(nèi),任一點(diǎn)到其四個(gè)面的距離之和為定值_____.14.(建三江)函數(shù)在處取得極小值,則=___15.已知函數(shù)的圖象與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,則的外接圓E的方程是________16.對(duì)某市“四城同創(chuàng)”活動(dòng)中100名志愿者的年齡抽樣調(diào)查統(tǒng)計(jì)后得到頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,則依據(jù)此圖可估計(jì)該市“四城同創(chuàng)”活動(dòng)中志愿者年齡在的人數(shù)為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示等腰梯形ABCD中,,,,點(diǎn)E為CD的中點(diǎn),沿AE將折起,使得點(diǎn)D到達(dá)F位置.(1)當(dāng)時(shí),求證:平面AFC;(2)當(dāng)時(shí),求二面角的余弦值.18.(12分)已知等差數(shù)列的前項(xiàng)和為,,且.(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列的前項(xiàng)和.19.(12分)已知等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)若,設(shè)數(shù)列的前項(xiàng)和為,求.20.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動(dòng)點(diǎn).(1)當(dāng)時(shí),求證平面;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.21.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長為3的正方形,是中點(diǎn),求直線與平面所成角的正弦值.22.(10分)已知點(diǎn)在橢圓:上,橢圓E的離心率為.(1)求橢圓E的方程;(2)若不平行于坐標(biāo)軸且不過原點(diǎn)O的直線l與橢圓E交于B,C兩點(diǎn),判斷是否可能為等邊三角形,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】取雙曲線的左焦點(diǎn),連接,計(jì)算可得,即.設(shè),則,,解得:,利用勾股定理計(jì)算可得,即可得出結(jié)果.【題目詳解】取雙曲線的左焦點(diǎn),連接,,則因?yàn)?,所以,?,.設(shè),則,,解得:.,,..故選:D2、B【解題分析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計(jì)算作答.詳解】因,且,則有,解得,所以實(shí)數(shù)的值為3.故選:B3、C【解題分析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【題目詳解】因?yàn)?gt;0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.4、C【解題分析】求出的表達(dá)式,解不等式可得結(jié)果.【題目詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當(dāng)時(shí),最大.故選:C.5、C【解題分析】根據(jù)向量線性運(yùn)算法則計(jì)算即可.【題目詳解】故選:C6、D【解題分析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計(jì)算作答.【題目詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則,,,所以.故選:D7、D【解題分析】設(shè)出直線方程,聯(lián)立拋物線方程,利用韋達(dá)定理,求得,根據(jù)其結(jié)果即可判斷和選擇.【題目詳解】為說明問題,不妨設(shè)拋物線方程,則,直線斜率顯然不為零,故可設(shè)直線方程為,聯(lián)立,可得,設(shè)坐標(biāo)為,則,故,當(dāng)時(shí),,;當(dāng)時(shí),,;故為銳角或直角.故選:D.8、A【解題分析】代入等差中項(xiàng)公式即可解決.【題目詳解】與的等差中項(xiàng)是故選:A9、D【解題分析】根據(jù)空間向量的加法、減法和數(shù)乘運(yùn)算可得結(jié)果.【題目詳解】.故選:D10、A【解題分析】根據(jù)橢圓的定義求得正確選項(xiàng).【題目詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長為.故選:A11、A【解題分析】先求出向量,再利用空間向量中點(diǎn)到平面的距離公式即可求解.【題目詳解】解:由題知,點(diǎn)在內(nèi),點(diǎn)在外,所以又向量為平面的法向量所以點(diǎn)到平面的距離為:故選:A.12、C【解題分析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【題目詳解】因?yàn)椋?,所以,,又,即,,所以離心率故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】利用正四面體內(nèi)任一點(diǎn)可將正四面體分成四個(gè)小四面體,令它們的高分別為,由體積相等即可求得;【題目詳解】正三角形邊長為a,則該三角形內(nèi)任一點(diǎn)到三邊的距離分別為,即有:,解得同理,棱長為a的正四面體內(nèi),任一點(diǎn)到其四個(gè)面的距離分別為,即有:,解得故答案為:【題目點(diǎn)撥】本題考查了利用空間幾何體的等體積法求高的和為定值,屬于簡單題;14、【解題分析】由,令,解得或,且時(shí),;時(shí),;時(shí),,所以當(dāng)時(shí),函數(shù)取得極小值考點(diǎn):導(dǎo)數(shù)在函數(shù)中的應(yīng)用;極值的條件15、【解題分析】由題可求三角形三頂點(diǎn)的坐標(biāo),三角形的外接圓的方程即求.【題目詳解】令,得或,則,∴外接圓的圓心的橫坐標(biāo)為2,設(shè),半徑為r,由,得,則,即,得,.∴的外接圓的方程為.故答案為:.16、【解題分析】首先根據(jù)頻率分布直方圖計(jì)算出年齡在的頻率,從而可計(jì)算出年齡在的人數(shù).【題目詳解】年齡在的頻率為,所以年齡在的人數(shù)為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)結(jié)合線面垂直的判定定理來證得結(jié)論成立.(2)建立空間直角坐標(biāo)系,利用向量法來求得二面角的大小.【小問1詳解】設(shè),由于四邊形是等腰梯形,是的中點(diǎn),,所以,所以四邊形是平行四邊形,由于,所以四邊形是菱形,所以,由于,是的中點(diǎn),所以,由于,所以平面.【小問2詳解】由于,所以三角形、三角形、三角形是等邊三角形,設(shè)是的中點(diǎn),設(shè),則,所以,所以,由于兩兩垂直.以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,平面的法向量為,設(shè)平面法向量為,則,故可設(shè),由圖可知,二面角為鈍角,設(shè)二面角為,,則.18、(1)(2)證明見解析.【解題分析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個(gè)量的值,可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)法可求得,即可證得原不等式成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,解得,因此,.【小問2詳解】證明:,因此,.故原不等式得證.19、(1),;(2).【解題分析】(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題意列出表達(dá)式,解出公比和公差,再根據(jù)等差數(shù)等比列的通項(xiàng)公式的求法求出通項(xiàng)即可;(2)根據(jù)第一問得到前n項(xiàng)和,數(shù)列,分組求和即可.解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.20、(1)證明見解析;(2).【解題分析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【題目詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量為平面的一個(gè)法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時(shí);設(shè)向量為平面的一個(gè)法向量則由,有,令,得;∴二面角的余弦值為.【題目點(diǎn)撥】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學(xué)生的分析能力,空間想象能力,運(yùn)算能力,屬于中檔題.21、(1)證明見解析(2)【解題分析】(1)根據(jù)線面垂直的判定定理,結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式,結(jié)合線面角定義進(jìn)行求解即可.【小問1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問2詳解】∵平面平面,交AD于點(diǎn)F,平面,平面平面,∴平面,以為原點(diǎn),,的方向分別為軸,軸的正方向建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,求得法向量為,由,所以直線與平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省石家莊市井陘礦區(qū)賈莊鎮(zhèn)區(qū)賈莊中學(xué)2025屆初三1月物理試題含解析
- 廈門演藝職業(yè)學(xué)院《軌道工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 電子智能手環(huán)手表考核試卷
- 海洋工程項(xiàng)目管理軟件考核試卷
- 電機(jī)在智能交通系統(tǒng)中的應(yīng)用考核試卷
- 光學(xué)測(cè)距儀的原理與使用考核試卷
- 鹽的電子元件制造考核試卷
- 家電配件的供應(yīng)鏈協(xié)同與優(yōu)化考核試卷
- 眼鏡店設(shè)備消毒考核試卷
- 游樂設(shè)施施工合同條款解讀考核試卷
- 物業(yè)管理服務(wù)擬投入設(shè)備一覽
- 周口市醫(yī)療保障門診特定藥品保險(xiǎn)申請(qǐng)表
- 產(chǎn)品QC工程圖 (質(zhì)量保證工程圖)Excel表格
- 簡約喜慶元宵節(jié)介紹模板 教學(xué)課件
- TCCIAT 0043-2022 建筑工程滲漏治理技術(shù)規(guī)程
- 西藏林芝嘉園小區(qū)項(xiàng)目可研(可研發(fā))
- 航運(yùn)系統(tǒng)組成和航運(yùn)企業(yè)組織結(jié)構(gòu)及特點(diǎn)
- 喪假證明模板
- 隧道二襯、仰拱施工方案
- 按期取得畢業(yè)證和學(xué)位證承諾書
- 第五章 學(xué)校教育的主要活動(dòng)形式:課堂教學(xué)
評(píng)論
0/150
提交評(píng)論