2024學(xué)年湖北省襄陽市四校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第1頁
2024學(xué)年湖北省襄陽市四校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第2頁
2024學(xué)年湖北省襄陽市四校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第3頁
2024學(xué)年湖北省襄陽市四校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第4頁
2024學(xué)年湖北省襄陽市四校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024學(xué)年湖北省襄陽市四校高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標(biāo)為,且為直角三角形,則以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.2.已知雙曲線的虛軸長是實軸長的2倍,則實數(shù)的值是A. B.C. D.3.點,是橢圓的左焦點,是橢圓上任意一點,則的取值范圍是()A. B.C. D.4.已知等比數(shù)列的前n項和為,且,則()A.20 B.30C.40 D.505.過拋物線()的焦點作斜率大于的直線交拋物線于,兩點(在的上方),且與準(zhǔn)線交于點,若,則A. B.C. D.6.下列雙曲線中,漸近線方程為的是A. B.C. D.7.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標(biāo)系中,,點P滿足,設(shè)點P的軌跡為C,下列結(jié)論正確的是()A.C的方程為B.當(dāng)A,B,P三點不共線時,面積的最大值為24C.當(dāng)A,B,P三點不共線時,射線是的角平分線D.在C上存在點M,使得8.已知直線與直線垂直,則a=()A.3 B.1或﹣3C.﹣1 D.3或﹣19.我國新冠肺炎疫情防控進入常態(tài)化,各地有序進行疫苗接種工作,下面是我國甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量10.已知函數(shù)為偶函數(shù),且當(dāng)時,,則不等式的解集為()A. B.C. D.11.命題“,”否定是()A., B.,C., D.,12.在條件下,目標(biāo)函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.80二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)拋物線的焦點為,直線過焦點,且與拋物線交于兩點,,則__________14.如圖,已知底面為正方形且各側(cè)棱均相等的四棱錐可繞著任意旋轉(zhuǎn),平面,分別是的中點,,,點在平面上的射影為點,則當(dāng)最大時,二面角的大小是________15.圓與x軸相切于點A.點B在圓C上運動,則AB的中點M的軌跡方程為______(當(dāng)點B運動到與A重合時,規(guī)定點M與點A重合);點N是直線上一點,則的最小值為______16.已知定點,點在直線上運動,則,兩點的最短距離為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點是橢圓上的一動點,且的最小值是1,當(dāng)垂直長軸時,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓相切,且交圓于兩點,求面積的最大值,并求此時直線方程.18.(12分)已知雙曲線中心在原點,離心率為2,一個焦點(1)求雙曲線方程;(2)設(shè)Q是雙曲線上一點,且過點F、Q的直線l與y軸交于點M,若,求直線l的方程19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c.已知.(1)求角C;(2)若,,求的周長.20.(12分)已知橢圓C:的離心率為,點和點都在橢圓C上,直線PA交x軸于點M(1)求橢圓C的方程,并求點M的坐標(biāo)(用m,n表示);(2)設(shè)O為原點,點B與點A關(guān)于x軸對稱,直線PB交x軸于點N,問:y軸上是否存在點Q(不與O重合),使得?若存在,求點Q的坐標(biāo),若不存在,說明理由21.(12分)已知橢圓左右焦點分別為,,離心率為,P是橢圓上一點,且面積的最大值為1.(1)求橢圓的方程;(2)過的直線交橢圓于M,N兩點,求的取值范圍.22.(10分)已知拋物線的頂點是坐標(biāo)原點,焦點在軸上,且拋物線上的點到焦點的距離是5.(1)求該拋物線的標(biāo)準(zhǔn)方程和的值;(2)若過點的直線與該拋物線交于,兩點,求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】設(shè)點位于第一象限,求得直線的方程,可得出點的坐標(biāo),由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程.【題目詳解】設(shè)點位于第一象限,直線的方程為,聯(lián)立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為.故選:B.【題目點撥】本題考查拋物線標(biāo)準(zhǔn)方程的求解,考查計算能力,屬于中等題.2、C【解題分析】由方程表示雙曲線知,又雙曲線的虛軸長是實軸長的2倍,所以,即,所以故選C.考點:雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì).3、A【解題分析】由,當(dāng)三點共線時,取得最值【題目詳解】設(shè)是橢圓的右焦點,則又因為,,所以,則故選:A4、B【解題分析】利用等比數(shù)列的前n項和公式即可求解.【題目詳解】設(shè)等比數(shù)列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.5、A【解題分析】分別過作準(zhǔn)線的垂線,垂足分別為,設(shè),則,,故選A.6、A【解題分析】由雙曲線的漸進線的公式可行選項A的漸進線方程為,故選A.考點:本題主要考查雙曲線的漸近線公式.7、C【解題分析】根據(jù)題意可求出C的方程為,即可根據(jù)題意判斷各選項的真假【題目詳解】對A,由可得,化簡得,即,A錯誤;對B,當(dāng)A,B,P三點不共線時,點到直線的最大距離為,所以面積的最大值為,B錯誤;對C,當(dāng)A,B,P三點不共線時,因為,所以射線是的角平分線,C正確;對D,設(shè),由可得點的軌跡方程為,而圓與圓的圓心距為,兩圓內(nèi)含,所以這樣的點不存在,D錯誤故選:C8、D【解題分析】根據(jù),得出關(guān)于的方程,即可求解實數(shù)的值.【題目詳解】直線與直線垂直,所以,解得或.故選:D.9、C【解題分析】由折線圖逐項分析得到答案.【題目詳解】對于選項A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項A正確;對于選項B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項B正確;對于選項C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項C錯誤;對于選項D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.10、D【解題分析】結(jié)合導(dǎo)數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡不等式來求得不等式的解集.【題目詳解】當(dāng)時,單調(diào)遞增,,所以單調(diào)遞增.因為是偶函數(shù),所以當(dāng)時,單調(diào)遞減.,,,或.即不等式的解集為.故選:D11、D【解題分析】根據(jù)含有量詞的命題的否定即可得出結(jié)論.【題目詳解】命題為全稱命題,則命題的否定為:,.故選:D.12、C【解題分析】首先畫出可行域,找到最優(yōu)解,得到關(guān)系式作為條件,再去求的最小值.【題目詳解】畫出的可行域,如下圖:由得由得;由得;目標(biāo)函數(shù)取最大值時必過N點,則則(當(dāng)且僅當(dāng)時等號成立)故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】拋物線焦點為,由于直線和拋物線有兩個交點,故直線斜率存在.根據(jù)拋物線的定義可知,故的縱坐標(biāo)為,橫坐標(biāo)為.不妨設(shè),故直線的方程為,聯(lián)立直線方程和拋物線方程,化簡得,解得,故.所以.【題目點撥】本小題主要考查直線和拋物線的位置關(guān)系,考查拋物線的幾何性質(zhì)和定義.考查三角形面積公式.在解題過程中,先根據(jù)題目所給拋物線的方程求得焦點的坐標(biāo),然后利用拋物線的定義:到定點的距離等于到定直線的距離,由此求得點的坐標(biāo),進而求得直線的方程,聯(lián)立直線方程和拋物線方程求得點的坐標(biāo).最后求得面積比.14、##【解題分析】先計算得到二面角的大小為60°,設(shè)二面角C-AB-O的大小為,則,計算得到答案.【題目詳解】解:由題可得,,因為分別是的中點,所以,,又,所以平面因為,所以,所以二面角為,設(shè)二面角的大小為,即,則,在中,利用余弦定理得到:,故當(dāng)時,取得最大值.故答案為:15、①.②.【解題分析】將點M的軌跡轉(zhuǎn)化為以AC為直徑的圓,再確定圓心及半徑即可求解,將的最小值轉(zhuǎn)化為點到圓心的距離再減去半徑可求解.【題目詳解】依題意得,,因為M為AB中點,所以,所以點M的軌跡是以AC為直徑的圓,又AC中點為,,所以點M的軌跡方程為,圓心,設(shè)關(guān)于直線的對稱點為,則有,解得,所以,所以由對稱性可知的最小值為故答案為:,16、【解題分析】線段最短,就是說的距離最小,此時直線和直線垂直,可先求的斜率,再求直線的方程,然后與直線聯(lián)立求交點即可【題目詳解】定點,點在直線上運動,當(dāng)線段最短時,就是直線和直線垂直,的方程為:,它與聯(lián)立解得,所以的坐標(biāo)是,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解題分析】(1)由的最小值為1,得到,再由,結(jié)合,求得的值,即可求得橢圓的方程.(2)設(shè)切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結(jié)合點到直線的距離公式和圓的弦長公式,求得的面積的表示,結(jié)合函數(shù)的單調(diào)性,即可求解.【題目詳解】(1)由題意,點橢圓上的一動點,且的最小值是1,得,因為當(dāng)垂直長軸時,可得,所以,即,又由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)由題意知切線的斜率一定存在,否則不能形成,設(shè)切線的方程為,聯(lián)立,整理得,因為直線與橢圓相切,所以,化簡得,則,因為點到直線的距離,所以,即,故的面積為,因為,可得,即,函數(shù)在上單調(diào)遞增,所以,當(dāng)時取等號,則,即面積的最大值為.當(dāng)時,此時,所以直線的方程為.【題目點撥】對于直線與橢圓的位置關(guān)系的處理方法:1、判定與應(yīng)用直線與橢圓的位置關(guān)系,一把轉(zhuǎn)化為研究直線方程與橢圓組成的方程組的解得個數(shù),結(jié)合判別式求解;2、對于過定點的直線,也可以通過定點在橢圓的內(nèi)部或在橢圓上,判定直線與橢圓的位置關(guān)系.18、(1)(2)或【解題分析】(1)依題意設(shè)所求的雙曲線方程為,則,再根據(jù)離心率求出,即可求出,從而得到雙曲線方程;(2)依題意可得直線的斜率存在,設(shè),即可得到的坐標(biāo),依題意可得或,分兩種情況分別求出的坐標(biāo),再根據(jù)的雙曲線上,代入曲線方程,即可求出,即可得解;【小問1詳解】解:設(shè)所求的雙曲線方程為(,),則,,∴,又則,∴所求的雙曲線方程為【小問2詳解】解:∵直線l與y軸相交于M且過焦點,∴l(xiāng)的斜率一定存在,則設(shè).令得,∵且M、Q、F共線于l,∴或當(dāng)時,,,∴,∵Q在雙曲線上,∴,∴,當(dāng)時,,代入雙曲線可得:,∴綜上所求直線l的方程為:或19、(1)(2)【解題分析】(1)根據(jù)正弦定理把化成,利用和角公式可得從而求得角;(2)根據(jù)三角形的面積和角的值求得,由余弦定理求得邊得到的周長.試題解析:(1)由已知可得(2)又,周長為考點:正余弦定理解三角形.20、(1),;(2)存在或,使得,理由見解析.【解題分析】(1)根據(jù)離心率,及求出,,進而得到橢圓方程及用m,n表示點M的坐標(biāo);(2)假設(shè)存在,根據(jù)得到,表達出點坐標(biāo),得到,結(jié)合得到,從而求出答案.【小問1詳解】由離心率可知:,又,,解得:,,故橢圓C:,直線PA為:,令得:,所以;【小問2詳解】存在或,使得,理由如下:假設(shè),使得,則,其中,直線:,令得:,則,,解得:,其中,故,所以,所以或21、(1)(2)【解題分析】(1)依題意得到方程組,求出、、,即可求出橢圓方程;(2)首先求出過且與軸垂直時、的坐標(biāo),即可得到,當(dāng)過的直線不與軸垂直時,可設(shè),,直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達定理,根據(jù)平面向量數(shù)量積的坐標(biāo)表示得到,將韋達定理代入得到,再根據(jù)函數(shù)的性質(zhì)求出取值范圍;【小問1詳解】解:由題意可列方程組,解得,所以橢圓方程為:.【小問2詳解】解:①當(dāng)過的直線與軸垂直時,此時,,,則,.②當(dāng)過的直線不與軸垂直時,可設(shè),,直線方程為聯(lián)立得:.所以,=將韋達定理代入上式得:.,,,由①②可知.22、(1),(2)證明見解析【解題分析】(1)根據(jù)點到焦點的距離等于5,利用拋物線的定義求得p,進而得到拋物線方程,然后將點代入拋物線求解;(2)方法一:設(shè)直線方程為:,與拋物線方程聯(lián)立,結(jié)合韋達定理,利用數(shù)量積的運算求解;方法二:根據(jù)直線過點,分直線的斜率不存在時,檢

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論