




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省承德市哈里哈鄉(xiāng)中學(xué)2021-2022學(xué)年高三數(shù)學(xué)理下學(xué)期期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設(shè)曲線在點(1,1)處的切線與軸的交點的橫坐標為,則的值為(
)
A.
B.
C.
D.1參考答案:B略2.已知拋物線y2=4x,過焦點F作直線與拋物線交于點A,B,設(shè)|AF|=m,|BF|=n,則m+n的最小值為()A.2 B.3 C. D.4參考答案:D【考點】拋物線的簡單性質(zhì).【分析】由拋物線y2=4x與過其焦點(1,0)的直線方程聯(lián)立,消去y整理成關(guān)于x的一元二次方程,設(shè)出A(x1,y1)、B(x2,y2)兩點坐標,再依據(jù)拋物線的定義,由韋達定理可以求得答案.【解答】解:由題意知,拋物線y2=4x的焦點坐標為(1,0),當斜率k存在時,設(shè)直線AB的方程為y=k(x﹣1),聯(lián)立拋物線方程,可得k2x2﹣(2k2+4)x+k2=0.設(shè)出A(x1,y1)、B(x2,y2)則x1+x2=2+,x1x2=1.依據(jù)拋物線的定義得出m+n=x1+x2+2>4,當斜率k不存在時,m+n=4.則m+n的最小值是4.故選D.【點評】本題考查直線與圓錐曲線的關(guān)系,解決問題的關(guān)鍵是聯(lián)立拋物線方程與過其焦點的直線方程,利用韋達定理予以解決,屬于中檔題.需要注意對斜率不存在的情況加以研究.3.若函數(shù)在區(qū)間上的圖像如圖所示,則的值
可能是
A.
B.
C.
D.參考答案:B略4.如圖,梯形中,,,,,將沿對角線折起.設(shè)折起后點的位置為,并且平面平面.給出下面四個命題:①;②三棱錐的體積為;③平面;④平面平面.其中正確命題的序號是
(A)①②
(B)③④
(C)①③
(D)②④參考答案:B5.下列選項中,說法正確的是(
)A.命題“若,則”的逆命題是真命題;B.設(shè)是向量,命題“若,則”的否命題是真命題;C.命題“”為真命題,則命題p和q均為真命題;D.命題”的否定是“”.參考答案:D6.設(shè)集合A={1,3,5,7},B={x|2≤x≤5},則A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}參考答案:B【考點】交集及其運算.【分析】直接利用交集的運算法則化簡求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},則A∩B={3,5}.故選:B.7.已知函數(shù),將的圖象上各點的橫坐標縮短為原來的,縱坐標不變,再將所得圖象向右平移個單位,得到函數(shù)的圖象,則函數(shù)的解析式為
(A)
(B)(C)
(D)參考答案:C略8.已知集合則等于
A. B.
C. D.參考答案:D9.設(shè)集合A={x∈Z|x2<3},B={x|x>﹣1},則A∩B=()A.{0,1} B.{﹣1,0} C.{﹣1,0,1} D.{0,1,2}參考答案:A【考點】1E:交集及其運算.【分析】先求出集合A和B,由此利用交集定義能求出A∩B.【解答】解:∵集合A={x∈Z|x2<3}={﹣1,0,1},B={x|x>﹣1},∴A∩B={0,1}.故選:A.10.已知拋物線上一點A的縱坐標為4,則點A到拋物線焦點的距離為(A)
(B)4
(C)
(D)5參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.已知數(shù)列{an},{bn}滿足,,,則b1·b2·…·b2017=
.參考答案:∵,,∴,,∴,,歸納猜想:∴故答案為:
12.從某小學(xué)隨機抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖)。由圖中數(shù)據(jù)可知a=
。參考答案:0.03013.已知全集,集合,則
。
參考答案:略14.函數(shù)的定義域是
.參考答案:[-3,1]要使函數(shù)f(x)有意義,則,即,解得﹣3≤x≤1,故函數(shù)的定義域為[﹣3,1],
15.已知實數(shù)x,y,滿足約束條件,若z的最大值為12,則k=
。
參考答案:6【知識點】簡單線性規(guī)劃作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).由z=x+y得y=﹣x+z,平移直線y=﹣x+z,由圖象可知當直線y=﹣x+z經(jīng)過點A時,直線y=﹣x+z的截距最大,此時z最大.此時z=x+y=12由,解得,即A(6,6),同時A也在y=k上,∴k=6.故答案為:6【思路點撥】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求K的值.
16.設(shè)x,y滿足約束條件,則z=2x﹣y的取值范圍為.參考答案:[﹣1,3]【考點】簡單線性規(guī)劃.【分析】由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【解答】解:可行域?qū)?yīng)的區(qū)域如圖:當直線y=2x﹣z經(jīng)過A時,目標函數(shù)最小,當經(jīng)過B時最大;其中A(0,1),由得到A(2,1),所以目標函數(shù)z=2x﹣y的最小值為2×0﹣1=﹣1,最大值為2×2﹣1=3;故目標函數(shù)z=2x﹣y的取值范圍為[﹣1,3];故答案為:[﹣1,3].17.2009年北京慶閱兵式上舉行升旗儀式,如圖,在坡度為15°的觀禮臺上,某一列座位與旗桿在同一個垂直于地面的平面上,在該列的第一排和最后一排測得旗桿頂端的仰角分別為60°和30°,且第一排和最后一排的距離為10米,則旗桿的高度為______米。參考答案:設(shè)旗桿的高度為米,如圖,可知,,所以,根據(jù)正弦定理可知,即,所以,所以米。三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.[選修4-4:坐標系與參數(shù)方程](10分)在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2﹣2ρcosθ﹣4ρsinθ+4=0,直線l的方程為x﹣y﹣1=0.(1)寫出曲線C的參數(shù)方程;(2)在曲線C上求一點P,使點P到直線l的距離最大,并求出此最大值.參考答案:【考點】簡單曲線的極坐標方程.【分析】(1)求出曲線C的直角坐標方程,可得參數(shù)方程;(2)設(shè)點P(1+cosθ,2+sinθ)(θ∈R),則點P到直線l的距離為:==,由此得出結(jié)論.【解答】解:(1)由ρ2﹣2ρcosθ﹣4ρsinθ+4=0及得:x2+y2﹣2x﹣4y+4=0,即(x﹣1)2+(y﹣2)2=1,所以曲線C的參數(shù)方程為:;(2)設(shè)點P(1+cosθ,2+sinθ)(θ∈R),則點P到直線l的距離為:==所以當時,點,此時,即,k∈z.所以,所以點P坐標為,點P到直線l的距離最大值為.【點評】本題考查參數(shù)方程的運用,考查極坐標方程、直角坐標方程、參數(shù)方程的轉(zhuǎn)化,屬于中檔題.19.(本題滿分12分)命題甲:R,關(guān)于x的方程有兩個非零實數(shù)解;命題乙:R,關(guān)于x的不等式的解集為空集;當甲、乙中有且僅有一個為真命題時,求實數(shù)a的取值范圍.參考答案:當甲真時,設(shè),即兩函數(shù)圖象有兩個交點.則當乙真時,時
滿足
或也滿足則
∴當甲乙有但僅有一個為真命題時,即或∴
20.某校甲、乙兩個班級各有5名編號為1,2,3,4,5的學(xué)生進行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計如下表:學(xué)生1號2號3號4號5號甲班65798乙班48977(1)從統(tǒng)計數(shù)據(jù)看,甲、乙兩個班哪個班成績更穩(wěn)定(用數(shù)字特征說明);(2)若把上表數(shù)據(jù)作為學(xué)生投籃命中率,規(guī)定兩個班級的1號和2號同學(xué)分別代表自己的班級參加比賽,每人投籃一次,將甲、乙兩個班兩名同學(xué)投中的次數(shù)之和分別記作X和Y,試求X和Y的分布列和數(shù)學(xué)期望.參考答案:【考點】離散型隨機變量及其分布列;極差、方差與標準差;離散型隨機變量的期望與方差.【專題】概率與統(tǒng)計.【分析】(1)求出兩個班數(shù)據(jù)的平均值都為7,求出甲班的方差,乙班的方差,推出結(jié)果即可.(2)X、Y可能取0,1,2,求出概率,得到分布列,然后分別求解期望.【解答】解:(1)兩個班數(shù)據(jù)的平均值都為7,甲班的方差,乙班的方差,因為,甲班的方差較小,所以甲班的成績比較穩(wěn)定.(2)X可能取0,1,2,,,,所以X分布列為:X012P
數(shù)學(xué)期望Y可能取0,1,2,,,,所以Y分布列為:Y012P
數(shù)學(xué)期望.【點評】本小題主要考查統(tǒng)計與概率的相關(guān)知識,其中包括方差的求法、基本概率的應(yīng)用以及離散型隨機變量的數(shù)學(xué)期望的求法.本題主要考查學(xué)生的數(shù)據(jù)處理能力.21.已知F1,F2分別為橢圓的左、右焦點.(1)當時,若P是橢圓上一點,且P位于第一象限,,求點P的坐標;(2)當橢圓的焦距為2時,若直線與橢圓相交于兩點,且,試求△AOB的面積.參考答案:(1)設(shè),有于是…………6分(2),橢圓方程為(7分)聯(lián)立直線得(8分)得滿足(9分)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年計算機基礎(chǔ)考試整體試題及答案
- 統(tǒng)計學(xué)考試綜合案例剖析試題及答案
- 紅十字知識試題及答案
- 舞蹈歌手筆試試題及答案
- 玻璃采購面試題目及答案
- 物流主管模擬面試題及答案
- 應(yīng)對變化的2024統(tǒng)計學(xué)考試試題及答案
- 常見藥物誤用案例分析試題及答案
- 考生分享藥理學(xué)復(fù)習經(jīng)驗試題及答案
- 2024年食品質(zhì)檢員考試歸納總結(jié)及答案
- 民政局發(fā)布的離婚協(xié)議書樣本
- 2023年全國統(tǒng)一高考語文試卷(全國甲卷)(含答案與解析)
- 消防安全評估消防安全評估方案
- 駕駛員汛期安全行車知識
- 小學(xué)勞動教育三上第三單元2《制作風車》課件
- 隱患排查統(tǒng)計分析報告
- 給小學(xué)數(shù)學(xué)教師的建議
- 中國古代文學(xué)史二復(fù)習資料
- 2024年重慶發(fā)展投資有限公司招聘筆試參考題庫含答案解析
- 成熟生產(chǎn)線評價報告
- 足球準確傳球訓(xùn)練技巧:提高準確傳球能力掌控比賽節(jié)奏
評論
0/150
提交評論