中考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第1頁
中考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第2頁
中考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第3頁
中考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第4頁
中考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題47函數(shù)的綜合問題之多函數(shù)綜合題 (含答案)_第5頁
已閱讀5頁,還剩64頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

47第9章函數(shù)的綜合問題之多函數(shù)綜合題一、選擇題1.下列四個(gè)函數(shù)中,在自變量SKIPIF1<0取值范圍內(nèi)SKIPIF1<0隨SKIPIF1<0的增大而減小的是()A.SKIPIF1<0(SKIPIF1<0<0) B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)自變量SKIPIF1<0取值范圍內(nèi)y隨x的增大而減小,結(jié)合函數(shù)圖像性質(zhì),判斷二次函數(shù)、反比例函數(shù)和一次函數(shù),選出正確結(jié)論.【解答】A.SKIPIF1<0(SKIPIF1<0<0),如下圖:當(dāng)SKIPIF1<0<0時(shí),y隨x的增大而減小,A選項(xiàng)符合題意.B.SKIPIF1<0,如下圖:x取值全體實(shí)數(shù),當(dāng)SKIPIF1<0<0時(shí),y隨x的增大而增大,B選項(xiàng)不符合題意.C.SKIPIF1<0,如下圖:x取值全體實(shí)數(shù),y隨x的增大而增大,C選項(xiàng)不符合題意.D.SKIPIF1<0,如下圖:x取值全體實(shí)數(shù),y隨x的增大而增大,D選項(xiàng)不符合題意.故選:A【點(diǎn)評】本題考查二次函數(shù)、反比例函數(shù)和一次函數(shù)增減性,掌握二次函數(shù)、反比例函數(shù)和一次函數(shù)圖像增減性是解題關(guān)鍵.2.在同一直角坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=ax2+2x+b的圖像可能是()A. B. C. D.【答案】C【分析】本題可先由一次函數(shù)y=ax+b圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)y=ax2+2x+b的圖象相比較看是否一致.【解答】A、由拋物線可知,a>0,得b>0,由直線可知,a<0,b>0,故本選項(xiàng)錯(cuò)誤;B、由拋物線可知,a<0,b>0,由直線可知,a<0,b<0,故本選項(xiàng)錯(cuò)誤;C、由拋物線可知,a>0,b>0,由直線可知,a>0,b>0,且交y軸同一點(diǎn),故本選項(xiàng)正確;D、由拋物線可知,a<0,b>0,由直線可知,a>0,b<0,故本選項(xiàng)錯(cuò)誤;故選:C.【點(diǎn)評】本題考查了二次函數(shù)圖象,一次函數(shù)的圖象,應(yīng)該熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì):開口方向、對稱軸、頂點(diǎn)坐標(biāo)等.3.如圖,正比例函數(shù)y1=mx,一次函數(shù)y2=ax+b和反比例函數(shù)y3=SKIPIF1<0的圖象在同一直角坐標(biāo)系中,若y3>y1>y2,則自變量x的取值范圍是()A.x<﹣1 B.﹣0.5<x<0或x>1 C.0<x<1 D.x<﹣1或0<x<1【答案】D【分析】根據(jù)圖象,找出雙曲線y3落在直線y1上方,且直線y1落在直線y2上方的部分對應(yīng)的自變量x的取值范圍即可.【解答】解:由圖象可知,當(dāng)x<﹣1或0<x<1時(shí),雙曲線y3落在直線y1上方,且直線y1落在直線y2上方,即y3>y1>y2,∴若y3>y1>y2,則自變量x的取值范圍是x<﹣1或0<x<1.故選:D.【點(diǎn)評】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,利用數(shù)形結(jié)合是解題的關(guān)鍵.4.如圖,已知在平面直角坐標(biāo)系SKIPIF1<0中,直線SKIPIF1<0分別交SKIPIF1<0軸,SKIPIF1<0軸于點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,分別交反比例函數(shù)SKIPIF1<0的圖象于點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0,若SKIPIF1<0的面積與SKIPIF1<0的面積相等,則SKIPIF1<0的值是()A.1 B.SKIPIF1<0 C.2 D.4【答案】C【分析】由反比例k的幾何意義可得S△OCE=SKIPIF1<0k,設(shè)D(x,SKIPIF1<0),所以S△BOD=-SKIPIF1<0x,再由已知可得SKIPIF1<0k=-SKIPIF1<0x,求得D(-k,-2),再將點(diǎn)D代入y=SKIPIF1<0x-1即可求k的值.【解答】解:由題意可求B(0,-1),

∵直線y=SKIPIF1<0x-1與y1=SKIPIF1<0交于點(diǎn)C,

∴S△OCE=SKIPIF1<0k,設(shè)D(x,SKIPIF1<0),∴S△BOD=SKIPIF1<0×1×(-x)=-SKIPIF1<0x,∵△COE的面積與△DOB的面積相等,∴SKIPIF1<0k=-SKIPIF1<0x,∴k=-x,

∴D(-k,-2),

∵D點(diǎn)在直線y=SKIPIF1<0x-1上,∴-2=-SKIPIF1<0k-1,∴k=2,

故選:C.【點(diǎn)評】本題考查反比例函數(shù)與一次函數(shù)的圖象與性質(zhì);熟練掌握反比函數(shù)的k的幾何意義,函數(shù)上點(diǎn)的特征是解題的關(guān)鍵.5.如圖,點(diǎn)M為反比例函數(shù)y=SKIPIF1<0上的一點(diǎn),過點(diǎn)M作x軸,y軸的垂線,分別交直線y=-x+b于C,D兩點(diǎn),若直線y=-x+b分別與x軸,y軸相交于點(diǎn)A,B,則AD·BC的值是()A.3 B.2SKIPIF1<0 C.2 D.SKIPIF1<0【答案】C【分析】設(shè)點(diǎn)M的坐標(biāo)為(SKIPIF1<0),將SKIPIF1<0代入y=-x+b中求出C點(diǎn)坐標(biāo),同理求出D點(diǎn)坐標(biāo),再根據(jù)兩點(diǎn)之間距離公式即可求解.【解答】解:設(shè)點(diǎn)M的坐標(biāo)為(SKIPIF1<0),將SKIPIF1<0代入y=-x+b中,得到C點(diǎn)坐標(biāo)為(SKIPIF1<0),將SKIPIF1<0代入y=-x+b中,得到D點(diǎn)坐標(biāo)為(SKIPIF1<0),∵直線y=-x+b分別與x軸,y軸相交于點(diǎn)A,B,∴A點(diǎn)坐標(biāo)(0,b),B點(diǎn)坐標(biāo)為(b,0),∴AD×BC=SKIPIF1<0,故選:C.【點(diǎn)評】本題考查的是一次函數(shù)及反比例函數(shù)的性質(zhì),先設(shè)出M點(diǎn)坐標(biāo),用M點(diǎn)的坐標(biāo)表示出C、D兩點(diǎn)的坐標(biāo)是解答此題的關(guān)鍵.6.如圖,A,B兩點(diǎn)在反比例函數(shù)SKIPIF1<0的圖象上,C,D兩點(diǎn)在反比例函數(shù)SKIPIF1<0的圖象上,AC⊥y軸于點(diǎn)E,BD⊥y軸于點(diǎn)F,AC=6,BD=3,EF=8,則k1﹣k2的值是()A.10 B.18 C.12 D.16【答案】D【分析】由反比例函數(shù)的性質(zhì)可知SKIPIF1<0,SKIPIF1<0,結(jié)合SKIPIF1<0和SKIPIF1<0可求得SKIPIF1<0的值.【解答】解:連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,如圖:由反比例函數(shù)的性質(zhì)可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0①,SKIPIF1<0,SKIPIF1<0SKIPIF1<0②,由①②兩式得:SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,故選:SKIPIF1<0.【點(diǎn)評】本題考查反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是利用參數(shù),構(gòu)建方程組解決問題,屬于中考??碱}型.7.已知在同一直角坐標(biāo)系中二次函數(shù)SKIPIF1<0和反比例函數(shù)SKIPIF1<0的圖象如圖所示,則一次函數(shù)SKIPIF1<0的圖象可能是()A. B. C. D.【答案】B【分析】根據(jù)反比例函數(shù)圖象和二次函數(shù)圖象位置可得出:a﹤0,b﹥0,c﹥0,由此可得出SKIPIF1<0﹤0,一次函數(shù)圖象與y軸的交點(diǎn)在y軸的負(fù)半軸,對照四個(gè)選項(xiàng)即可解答.【解答】由二次函數(shù)圖象可知:a﹤0,對稱軸SKIPIF1<0﹥0,∴a﹤0,b﹥0,由反比例函數(shù)圖象知:c﹥0,∴SKIPIF1<0﹤0,一次函數(shù)圖象與y軸的交點(diǎn)在y軸的負(fù)半軸,對照四個(gè)選項(xiàng),只有B選項(xiàng)符合一次函數(shù)SKIPIF1<0的圖象特征.故選:B·【點(diǎn)評】本題考查反比例函數(shù)的圖象、二次函數(shù)的圖象、一次函數(shù)的圖象,熟練掌握函數(shù)圖象與系數(shù)之間的關(guān)系是解答的關(guān)鍵·8.若函數(shù)SKIPIF1<0與SKIPIF1<0的圖像如圖所示,則函數(shù)SKIPIF1<0的大致圖像是()A. B.C. D.【答案】B【分析】先根據(jù)二次函數(shù)及反比例函數(shù)的圖像確定k、c的正負(fù),然后根據(jù)一次函數(shù)的性質(zhì)即可解答.【解答】解:根據(jù)反比例函數(shù)的圖象位于二、四象限知k<0;根據(jù)二次函數(shù)的圖像可知a>0,b<0,c>0;根據(jù)一次函數(shù)的性質(zhì)可得:函數(shù)y=kx+c的大致圖象經(jīng)過一、二、四象限.故答案為B.【點(diǎn)評】本題考查了函數(shù)的圖象的知識,解題的關(guān)鍵在于根據(jù)二次函數(shù)及反比例函數(shù)的圖像確定k、c的正負(fù).9.正方形ABCD的邊長為4,P為BC上的動點(diǎn),連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ,則AQ的最小值是()A.5 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】A【分析】設(shè)BP=x,CQ=y,根據(jù)△ABP∽△PCQ可得y關(guān)于x的二次函數(shù),利用二次函數(shù)的性質(zhì),求得y的最大值情況,則QD最小,則AQ最?。窘獯稹俊咚倪呅蜛BCD是正方形,∴∠B=∠C=90°,∵PQ⊥AP,∴∠APB+∠QPC=90°,∠APB+∠BAP=90°,∴∠BAP=∠QPC,∴△ABP∽△PCQ,∴SKIPIF1<0,設(shè)BP=x,CQ=y即SKIPIF1<0,∴y=﹣SKIPIF1<0+x=﹣SKIPIF1<0+1(0<x<4),∵﹣SKIPIF1<0<0,∴y有最大值,∴當(dāng)x=2時(shí),y有最大值1cm.此時(shí)QD=3在Rt△AQP中,SKIPIF1<0故AQ的最小值是5故選:A.【點(diǎn)評】本題考查最值問題,是利用二次函數(shù)求最值的方式解決的,常見求最值方法有3種:利用對稱求最值;利用三角形三邊關(guān)系求最值;利用二次函數(shù)性質(zhì)求最值.10.如圖所示,已知點(diǎn)C(2,0),直線SKIPIF1<0與兩坐標(biāo)軸分別交于A、B兩點(diǎn),D、E分別是AB、OA上的動點(diǎn),當(dāng)SKIPIF1<0的周長取最小值時(shí),點(diǎn)D的坐標(biāo)為()A.(2,1) B.(3,2) C.(SKIPIF1<0,2) D.(SKIPIF1<0,SKIPIF1<0)【答案】D【分析】如圖,點(diǎn)C關(guān)于OA的對稱點(diǎn)SKIPIF1<0,點(diǎn)C關(guān)于直線AB的對稱點(diǎn)SKIPIF1<0,求出點(diǎn)SKIPIF1<0的坐標(biāo),連接SKIPIF1<0與AO交于點(diǎn)E,與AB交于點(diǎn)D,此時(shí)△DEC周長最小,再求出直線DE的解析式,聯(lián)立兩條直線的解析式即可求出交點(diǎn)D的坐標(biāo).【解答】如圖,點(diǎn)C關(guān)于OA的對稱點(diǎn)SKIPIF1<0,點(diǎn)C關(guān)于直線AB的對稱點(diǎn)SKIPIF1<0∵直線AB的解析式為SKIPIF1<0∴直線SKIPIF1<0的解析式為SKIPIF1<0由SKIPIF1<0解得SKIPIF1<0∴直線AB與直線SKIPIF1<0的交點(diǎn)坐標(biāo)為SKIPIF1<0∵K是線段SKIPIF1<0的中點(diǎn)∴SKIPIF1<0連接SKIPIF1<0與AO交于點(diǎn)E,與AB交于點(diǎn)D,此時(shí)△DEC周長最小設(shè)直線DE的解析式為SKIPIF1<0可得SKIPIF1<0解得SKIPIF1<0∴直線DE的解析式為SKIPIF1<0聯(lián)立直線DE和直線直線SKIPIF1<0可得SKIPIF1<0解得SKIPIF1<0∴點(diǎn)D的坐標(biāo)為SKIPIF1<0故答案為:D.【點(diǎn)評】本題考查了一次函數(shù)的幾何問題,掌握一次函數(shù)的性質(zhì)是解題的關(guān)鍵.二、填空題11.直線y=3kx+2(k﹣1)與拋物線y=x2+2kx﹣2在﹣1≤x≤3范圍內(nèi)有唯一公共點(diǎn),則k的取值為________.【答案】1<k≤SKIPIF1<0或k=0【分析】聯(lián)立方程組SKIPIF1<0得到x2=kx+2k,看成是SKIPIF1<0聯(lián)立而成的兩個(gè)函數(shù),畫出函數(shù)圖象,運(yùn)用數(shù)形結(jié)合法求解即可.【解答】解:聯(lián)立SKIPIF1<0,得:3kx+2(k﹣1)=x2+2kx﹣2,即,x2=kx+2k,可以看成是SKIPIF1<0聯(lián)立而成的兩個(gè)函數(shù),∵y=kx+2k=k(x+2),∴當(dāng)x+2=0時(shí),此函數(shù)必過定點(diǎn)(﹣2,0),即過(﹣2,0),(﹣1,1)的直線l1與過(﹣2,0),(3,9)的直線l2間的范圍就是滿足條件的直線運(yùn)動的位置,如圖,將(﹣1,1)代入y=kx+2k得1=﹣k+2k,解得,k=1,將(3,9)代入y=kx+2k得,9=3k+2k,解得,k=SKIPIF1<0,當(dāng)k=1時(shí),直線直線與拋物線在﹣1≤x≤3內(nèi)有兩個(gè)交點(diǎn),∴k≠1,∴1<k≤SKIPIF1<0,當(dāng)k=0時(shí),直線為y=﹣2,拋物線為y=x2﹣2,此時(shí),在﹣1≤x≤3范圍內(nèi)有唯一公共點(diǎn),故答案為:1<k≤SKIPIF1<0或k=0.【點(diǎn)評】本題主要考查二次函數(shù)的圖像與性質(zhì),熟練掌握二次函數(shù)的圖像與性質(zhì)是解題的關(guān)鍵.12.如圖,曲線是由函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象繞坐標(biāo)原點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0得到的,過點(diǎn)SKIPIF1<0,SKIPIF1<0的直線與曲線SKIPIF1<0相交于點(diǎn)SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的面積為_______.【答案】SKIPIF1<0【分析】由題意得SKIPIF1<0,SKIPIF1<0,建立如圖所示的平面直角坐標(biāo)系,利用方程組求出M、N的坐標(biāo),根據(jù)S△OMN=S△OBM-S△OBN計(jì)算即可.【解答】解:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴OA⊥OB.建立如圖新的坐標(biāo)系,OB為x′軸,OA為y′軸.∵SKIPIF1<0在新的坐標(biāo)系中,A(0,8),B(4,0),由待定系數(shù)法可得直線AB解析式為y′=-2x′+8,函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象繞坐標(biāo)原點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0得到SKIPIF1<0,聯(lián)立SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)評】本題考查坐標(biāo)與圖形的性質(zhì)以及一次函數(shù)和反比例函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會建立新的坐標(biāo)系解決問題.13.如圖,直線y=mx+n與雙曲線y=SKIPIF1<0(k>0,x>0)相交于點(diǎn)A(2,4),與y軸相交于點(diǎn)B(0,2),點(diǎn)C在該反比例函數(shù)的圖象上運(yùn)動,當(dāng)△ABC的面積超過5時(shí),點(diǎn)C的橫坐標(biāo)t的取值范圍是_____.【答案】SKIPIF1<0或SKIPIF1<0【分析】過C作CD∥y軸,交直線AB于點(diǎn)D.把A(2,4)代入y=SKIPIF1<0,求出k=8,得到反比例函數(shù)的解析式,再把A(2,4),B(0,2)代入y=mx+n,求出直線AB的解析式為y=x+2.設(shè)C(t,SKIPIF1<0),則D(t,t+2).由三角形的面積公式可得S△ABC=SKIPIF1<0CD×2=CD=|t+2﹣SKIPIF1<0|,根據(jù)△ABC的面積超過5列出不等式|t+2﹣SKIPIF1<0|>5,解不等式即可.【解答】解:如圖,過C作CD∥y軸,交直線AB于點(diǎn)D.∵雙曲線y=SKIPIF1<0(k>0,x>0)過點(diǎn)A(2,4),∴k=2×4=8,∴y=SKIPIF1<0.∵直線y=mx+n過點(diǎn)A(2,4),B(0,2),∴SKIPIF1<0,解得SKIPIF1<0,∴直線AB的解析式為y=x+2.設(shè)C(t,SKIPIF1<0),則D(t,t+2),CD=|t+2﹣SKIPIF1<0|.∵S△ABC=SKIPIF1<0CD×2=CD=|t+2﹣SKIPIF1<0|,∴當(dāng)△ABC的面積超過5時(shí),|t+2﹣SKIPIF1<0|>5,∴t+2﹣SKIPIF1<0>5或t+2﹣SKIPIF1<0<﹣5.①如果t+2﹣SKIPIF1<0>5,那么SKIPIF1<0>0,∵t>0,∴t2﹣3t﹣8>0,∴t>SKIPIF1<0或t<SKIPIF1<0(舍去);②如果t+2﹣SKIPIF1<0<﹣5,那么SKIPIF1<0<0,∵t>0,∴t2+7t﹣8<0,∴﹣8<t<1,∴0<t<1.綜上所述,當(dāng)△ABC的面積超過5時(shí),點(diǎn)C的橫坐標(biāo)t的取值范圍是t>SKIPIF1<0或SKIPIF1<0.故答案為:t>SKIPIF1<0或0<t<1.【點(diǎn)評】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合應(yīng)用,用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,三角形面積,不等式的性質(zhì),一元二次方程解法等知識點(diǎn),利用三角形面積等量代換列出不等式是解題的關(guān)鍵.14.如圖,已知直線y=﹣2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與雙曲線y=SKIPIF1<0(x>0)交于C、D兩點(diǎn),且∠AOC=∠ADO,則k的值為_____.【答案】SKIPIF1<0【分析】先利用面積判斷出BD=AC,再判斷出△AOC∽△ADO,進(jìn)而建立方程求出AC=BD,再判斷出△ACE∽△ABO,進(jìn)而求出CE,OE,即可得出結(jié)論.【解答】解:由已知得OA=2,OB=4,根據(jù)勾股定理得出,AB=2SKIPIF1<0,如圖,過點(diǎn)C作CE⊥x軸于E,作CG⊥y軸G,過點(diǎn)D作DH⊥x軸于H,作DF⊥y軸于F,連接GH,GD,CH,∵點(diǎn)C,D是反比例圖象上的點(diǎn),∴S矩形FDHO=S矩形GCEO,∴SKIPIF1<0S矩形FDHO=SKIPIF1<0S矩形GDEO.∴S△DGH=S△GHC.∴點(diǎn)C,D到GH的距離相等.∴CD∥GH.∴四邊形BDHG和四邊形GHAC都是平行四邊形.∴BD=GH,GH=CA.即BD=AC;設(shè)AC=BD=m,∵∠AOC=∠ADO,CAO=∠DAO,∴△AOC∽△ADO,∴SKIPIF1<0,∴AO2=AC?AD,∴22=m(2SKIPIF1<0﹣m),∴m=SKIPIF1<0±1(舍去SKIPIF1<0+1),過點(diǎn)C作CE⊥x軸于點(diǎn)E,∴△ACE∽△ABO,∴SKIPIF1<0,∴SKIPIF1<0,∴AE=SKIPIF1<0,CE=SKIPIF1<0,∴OE=OA﹣AE=2﹣SKIPIF1<0=SKIPIF1<0?OE=SKIPIF1<0=SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)評】本題考查了一次函數(shù)和反比例函數(shù),以及相似三角形的判定和性質(zhì),解題的關(guān)鍵是理解函數(shù)的圖像和性質(zhì),結(jié)合相似三角形解決問題.15.在平面直角坐標(biāo)系SKIPIF1<0中,已知直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(點(diǎn)SKIPIF1<0在第一象限),直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn).當(dāng)這兩條直線互相垂直,且四邊形SKIPIF1<0的周長為SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為_________.【答案】SKIPIF1<0或SKIPIF1<0【分析】首先根據(jù)題意求出點(diǎn)A坐標(biāo)為(SKIPIF1<0,SKIPIF1<0),從而得出SKIPIF1<0,然后分兩種情況:①當(dāng)點(diǎn)B在第二象限時(shí)求出點(diǎn)B坐標(biāo)為(SKIPIF1<0,SKIPIF1<0),從而得出SKIPIF1<0,由此可知SKIPIF1<0,再利用平面直角坐標(biāo)系任意兩點(diǎn)之間的距離公式可知:SKIPIF1<0,所以SKIPIF1<0,據(jù)此求出SKIPIF1<0,由此進(jìn)一步通過證明四邊形ABCD是菱形加以分析求解即可得出答案;②當(dāng)點(diǎn)B在第四象限時(shí),方法與前者一樣,具體加以分析即可.【解答】∵直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(點(diǎn)SKIPIF1<0在第一象限),∴聯(lián)立二者解析式可得:SKIPIF1<0,由此得出點(diǎn)A坐標(biāo)為(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0,①當(dāng)點(diǎn)B在第二象限時(shí),如圖所示:∵直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),∴聯(lián)立二者解析式可得:SKIPIF1<0,由此得出點(diǎn)B坐標(biāo)為(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0,∵AC⊥BD,∴SKIPIF1<0,根據(jù)平面直角坐標(biāo)系任意兩點(diǎn)之間的距離公式可知:SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,根據(jù)反比例函數(shù)圖象的對稱性可知:OC=OA,OB=OD,∵AC⊥BD,∴四邊形ABCD是菱形,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或2,∴A點(diǎn)坐標(biāo)為(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0),②當(dāng)點(diǎn)B在第四象限時(shí),如圖所示:∵直線SKIPIF1<0(SKIPIF1<0)與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),∴聯(lián)立二者解析式可得:SKIPIF1<0,由此得出點(diǎn)B坐標(biāo)為(SKIPIF1<0,SKIPIF1<0),∴SKIPIF1<0,∵AC⊥BD,∴SKIPIF1<0,根據(jù)平面直角坐標(biāo)系任意兩點(diǎn)之間的距離公式可知:SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,根據(jù)反比例函數(shù)圖象的對稱性可知:OC=OA,OB=OD,∵AC⊥BD,∴四邊形ABCD是菱形,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或2,∴A點(diǎn)坐標(biāo)為(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0),綜上所述,點(diǎn)A坐標(biāo)為:(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0),故答案為:(SKIPIF1<0,SKIPIF1<0)或(SKIPIF1<0,SKIPIF1<0).【點(diǎn)評】本題主要考查了反比例函數(shù)與一次函數(shù)圖象及性質(zhì)和菱形性質(zhì)的綜合運(yùn)用,熟練掌握相關(guān)方法是解題關(guān)鍵.三、解答題16.如圖,直角坐標(biāo)系SKIPIF1<0中,一次函數(shù)SKIPIF1<0的圖像SKIPIF1<0分別與SKIPIF1<0,SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),正比例函數(shù)的圖像SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0SKIPIF1<0.(1)求SKIPIF1<0的值及SKIPIF1<0的解析式;(2)求△AOC的面積;(3)若點(diǎn)M是直線SKIPIF1<0一動點(diǎn),連接OM,當(dāng)△AOM的面積是△BOC面積的SKIPIF1<0時(shí),請直接寫出出符合條件的點(diǎn)M的坐標(biāo);(4)一次函數(shù)SKIPIF1<0的圖像為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能圍成三角形,直接寫出SKIPIF1<0的值.【答案】(1)SKIPIF1<0;SKIPIF1<0;(2)20;(3)M的坐標(biāo)為SKIPIF1<0,SKIPIF1<0;(4)k的值是SKIPIF1<0或2或SKIPIF1<0.【分析】(1)把點(diǎn)C代入SKIPIF1<0可得出m的值,設(shè)SKIPIF1<0為SKIPIF1<0,即可得到結(jié)果;(2)求出A的值,根據(jù)三角形面積計(jì)算即可;(3)求出AM,BC,根據(jù)SKIPIF1<0列出等式計(jì)算即可;(4)由于一次函數(shù)SKIPIF1<0的圖像為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能圍成三角形,根據(jù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的位置關(guān)系分別判斷即可;【解答】(1)∵點(diǎn)SKIPIF1<0SKIPIF1<0在SKIPIF1<0上,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0為SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的解析式SKIPIF1<0.(2)由于SKIPIF1<0,∴SKIPIF1<0與SKIPIF1<0垂直,由(1)可知SKIPIF1<0,在SKIPIF1<0中,令SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(3)由題意可得:SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,故M的坐標(biāo)為SKIPIF1<0,SKIPIF1<0.(4)∵一次函數(shù)SKIPIF1<0的圖像為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不能圍成三角形,∴當(dāng)SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0、SKIPIF1<0平行時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0、SKIPIF1<0平行時(shí),SKIPIF1<0;故k的值是SKIPIF1<0或2或SKIPIF1<0.【點(diǎn)評】本題主要考查了一次函數(shù)中的直線位置關(guān)系,準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.17.已知,在平面直角坐標(biāo)系中,點(diǎn)SKIPIF1<0,SKIPIF1<0是平行四邊形OABC的兩個(gè)頂點(diǎn),反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)B.(1)求出反比例函數(shù)的表達(dá)式;(2)將SKIPIF1<0沿著x軸翻折,點(diǎn)C落在點(diǎn)D處,判斷點(diǎn)D是否在反比例函數(shù)SKIPIF1<0的圖象上,并說明理由;(3)在x軸上是否存在一點(diǎn)P,使SKIPIF1<0為等腰三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.【答案】(1)SKIPIF1<0;(2)在,理由見解析;(3)存在,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【分析】(1)證明SKIPIF1<0,則SKIPIF1<0,故點(diǎn)SKIPIF1<0,故SKIPIF1<0,即可求解;(2)翻折后點(diǎn)SKIPIF1<0的坐標(biāo)為:SKIPIF1<0,則SKIPIF1<0,即可求解;(3)分SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三種情況,分別求解即可.【解答】解:(1)分別過點(diǎn)SKIPIF1<0、SKIPIF1<0作SKIPIF1<0軸的垂線,垂足分別為:SKIPIF1<0、SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故點(diǎn)SKIPIF1<0,故SKIPIF1<0,則反比例函數(shù)表達(dá)式為:SKIPIF1<0;(2)翻折后點(diǎn)SKIPIF1<0的坐標(biāo)為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在反比例函數(shù)SKIPIF1<0的圖象上;(3)如圖示:當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0;綜上,點(diǎn)SKIPIF1<0的坐標(biāo)為:SKIPIF1<0,SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點(diǎn)評】本題考查了反比例函數(shù)的性質(zhì),平行四邊形性質(zhì)等知識點(diǎn),熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.18.在“新冠”疫情期間,全國人民“眾志成城,同心抗疫”,某商家決定將一周獲得的利潤全部捐贈給社區(qū)用于抗疫.已知商家購進(jìn)一批產(chǎn)品,成本為10元/件,擬采取線上和線下兩種方式進(jìn)行銷售.調(diào)查發(fā)現(xiàn),線下的周銷售量y(單位:件)與線下售價(jià)x(單位:元/件,SKIPIF1<0)滿足一次函數(shù)的關(guān)系,部分?jǐn)?shù)據(jù)如下表:x(元/件)1213141516y(件)1201101009080(1)求y與x的函數(shù)關(guān)系式;(2)若線上售價(jià)始終比線下每件便宜2元,且線上的周銷售量固定為40件.試問:當(dāng)x為多少時(shí),線上和線下周利潤總和達(dá)到最大?并求出此時(shí)的最大利潤.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;730元.【分析】(1)根據(jù)線下周銷售量與線下售價(jià)存在一次函數(shù)關(guān)系,將表格中任意兩個(gè)數(shù)值代入一次函數(shù),計(jì)算求解即可.(2)先算線上、線下銷售額總數(shù),再減去線上、線下總成本,所得結(jié)果就是線上、線下周利潤總和,其結(jié)果可表示成以x為自變量的二次函數(shù),運(yùn)用求二次函數(shù)最大值的方法運(yùn)算求解.【解答】(1)解:SKIPIF1<0線下的周銷售量y與線下售價(jià)x(SKIPIF1<0)滿足一次函數(shù)的關(guān)系,SKIPIF1<0,從題中表格任取兩組數(shù)值,聯(lián)立二元一次方程組,SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0.(2)解:設(shè)線下每件商品售價(jià)x元,線上每件商品售價(jià)SKIPIF1<0元,SKIPIF1<0銷售額=單價(jià)×銷售量SKIPIF1<0線上、線下總銷售額=SKIPIF1<0,SKIPIF1<0成本=每件商品進(jìn)價(jià)×件數(shù)SKIPIF1<0線上、線下總成本=SKIPIF1<0,SKIPIF1<0總利潤=總銷售額-總成本可列式子:SKIPIF1<0整理得:SKIPIF1<0,設(shè)總利潤y與商品線下每件售價(jià)x存在二次函數(shù)關(guān)系:SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0,函數(shù)有最大值,最大值為SKIPIF1<0.SKIPIF1<0當(dāng)SKIPIF1<0時(shí),線上和線下周利潤總和達(dá)到最大,最大利潤是730元.【點(diǎn)評】本題考查一次函數(shù)、二次函數(shù)在銷售中求最大值,找出題中的數(shù)量關(guān)系,掌握二次函數(shù)求最值的方法是解題關(guān)鍵.19.某醫(yī)藥研究所研發(fā)了一種新藥,試驗(yàn)藥效時(shí)發(fā)現(xiàn):1.5小時(shí)內(nèi),血液中含藥量y(微克)與時(shí)間x(小時(shí))的關(guān)系可近似地用二次函數(shù)y=ax2+bx表示;1.5小時(shí)后(包括1.5小時(shí)),y與x可近似地用反比例函數(shù)y=SKIPIF1<0(k>0)表示,部分實(shí)驗(yàn)數(shù)據(jù)如表:時(shí)間x(小時(shí))0.211.8…含藥量y(微克)7.22012.5…(1)求a、b及k的值;(2)服藥后幾小時(shí)血液中的含藥量達(dá)到最大值?最大值為多少?(3)如果每毫升血液中含藥量不少于10微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時(shí)間.(SKIPIF1<0≈1.41,精確到0.1小時(shí))【答案】(1)a=﹣20,b=40,k=22.5;(2)服藥后1小時(shí)血液中的含藥量達(dá)到最大值,最大值為20微克;(3)成人按規(guī)定劑量服用該藥一次后能維持2.0小時(shí)的有效時(shí)間.【分析】(1)根據(jù)表格信息代入數(shù)值列方程組求解即可;(2)由(1)得到y(tǒng)=﹣20x2+40x,化為頂點(diǎn)式即可得到結(jié)果;(3)令y=10求出x的值就是所求的結(jié)果;【解答】(1)設(shè)1.5小時(shí)內(nèi),血液中含藥量y(微克)與時(shí)間x(小時(shí))的關(guān)系為y=ax2+bx,根據(jù)表格得:SKIPIF1<0,解得:a=﹣20,b=40,1.5小時(shí)后(包括1.5小時(shí)),y與x可近似地用反比例函數(shù)y=SKIPIF1<0(k>0),根據(jù)表格得:k=1.8×12.5=22.5,∴a=﹣20,b=40,k=22.5;(2)由(1)知y=﹣20x2+40x,∴y=﹣20(x﹣1)2+20,∴服藥后1小時(shí)血液中的含藥量達(dá)到最大值,最大值為20微克;(3)當(dāng)y=10時(shí),10=﹣20x2+40x,或10=SKIPIF1<0,解得:x=1﹣SKIPIF1<0或x=1+SKIPIF1<0(x>1.5,不合題意舍去),x=2.25,∴成人按規(guī)定劑量服用該藥一次后能維持2.25﹣(1﹣SKIPIF1<0)≈2.0小時(shí)的有效時(shí)間.【點(diǎn)評】本題主要考查了二次函數(shù)的應(yīng)用,準(zhǔn)確求解二次函數(shù)的解析式及一般式與頂點(diǎn)式的互化是解題的關(guān)鍵.20.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A、B、C、D中的某一站出地鐵,再騎共享單車回家,設(shè)他出地鐵的站點(diǎn)與文化宮距離為x(單位:千米),乘坐地鐵的時(shí)間y1(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEx(千米)891011.513Y1(分鐘)1820222528(1)求y1關(guān)于x的函數(shù)表達(dá)式;(2)李華騎單車的時(shí)間(單位:分鐘)也受x的影響,其關(guān)系可以用SKIPIF1<0來描述,請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家里所需的時(shí)間最短?并求出最短時(shí)間.【答案】(1)SKIPIF1<0;(2)李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家里所需的時(shí)間最短,最短時(shí)間為SKIPIF1<0分鐘【分析】(1)先設(shè)函數(shù)表達(dá)式為SKIPIF1<0,再結(jié)合表格數(shù)據(jù)利用待定系數(shù)法求解即可;(2)設(shè)李華從文化宮回到家所需時(shí)間為y,則SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì)進(jìn)一步分析求解即可.【解答】(1)設(shè)SKIPIF1<0關(guān)于x的函數(shù)表達(dá)式為:SKIPIF1<0,由表格可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0關(guān)于x的函數(shù)表達(dá)式為:SKIPIF1<0;(2)設(shè)李華從文化宮回到家所需時(shí)間為y,則SKIPIF1<0,即:SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),y有最小值,且SKIPIF1<0,∴李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家里所需的時(shí)間最短,最短時(shí)間為SKIPIF1<0分鐘.【點(diǎn)評】本題主要考查了一次函數(shù)與二次函數(shù)的性質(zhì)的綜合應(yīng)用,熟練掌握相關(guān)方法是解題關(guān)鍵.21.如圖,已知拋物線SKIPIF1<0與x軸正半軸交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0軸上一動點(diǎn),過點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線交拋物線于點(diǎn)SKIPIF1<0,交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)SKIPIF1<0時(shí),求線段SKIPIF1<0的最大值;(3)若SKIPIF1<0點(diǎn)在SKIPIF1<0正半軸移動時(shí),在SKIPIF1<0和SKIPIF1<0中當(dāng)其中一個(gè)三角形的面積是另一個(gè)三角形面積的2倍時(shí),求相應(yīng)SKIPIF1<0的值;(4)若點(diǎn)SKIPIF1<0在拋物線上,點(diǎn)SKIPIF1<0在線段SKIPIF1<0的中垂線上,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形是平行四邊形,求SKIPIF1<0點(diǎn)的橫坐標(biāo).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0或SKIPIF1<0;(4)SKIPIF1<0或SKIPIF1<0【分析】(1)用待定系數(shù)法求出拋物線解析式即可;(2)先確定出直線AB解析式,進(jìn)而得出點(diǎn)D和點(diǎn)C的坐標(biāo),得出CD的函數(shù)關(guān)系式,即可得出結(jié)論;(3)先確定SKIPIF1<0,再分兩種情況解絕對值方程即可;(4)由點(diǎn)A和點(diǎn)B的坐標(biāo)得出中點(diǎn)和△AOB是等腰直角三角形,可得線段SKIPIF1<0的中垂線經(jīng)過原點(diǎn),設(shè)線段SKIPIF1<0的中垂線為SKIPIF1<0,聯(lián)立方程組求解即可得出答案.【解答】解:(1)拋物線SKIPIF1<0與x軸正半軸交于點(diǎn)SKIPIF1<0,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴拋物線的函數(shù)表達(dá)式為SKIPIF1<0;(2)∵SKIPIF1<0,SKIPIF1<0,∴直線AB的解析式為SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(3)由(2)可知,SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去);②當(dāng)SKIPIF1<0時(shí),∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去);∵SKIPIF1<0點(diǎn)在SKIPIF1<0正半軸移動,∴SKIPIF1<0或SKIPIF1<0,綜上所述,SKIPIF1<0或SKIPIF1<0;(4)∵SKIPIF1<0,SKIPIF1<0,即OA=OB,∴中點(diǎn)SKIPIF1<0,△AOB是等腰直角三角形,∴線段SKIPIF1<0的中垂線經(jīng)過原點(diǎn),∵點(diǎn)SKIPIF1<0在線段SKIPIF1<0的中垂線上,設(shè)線段SKIPIF1<0的中垂線為SKIPIF1<0,把SKIPIF1<0代入,得:SKIPIF1<0,SKIPIF1<0,把①代入②,化簡得:SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0點(diǎn)的橫坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【點(diǎn)評】本題是二次函數(shù)綜合題,主要考查了待定系數(shù)法、極值、絕對值方程、線段的中垂線、解一元二次方程等知識.22.函數(shù)SKIPIF1<0的圖象記為SKIPIF1<0(SKIPIF1<0為常數(shù)),當(dāng)SKIPIF1<0與SKIPIF1<0軸存在兩個(gè)交點(diǎn)時(shí),設(shè)交點(diǎn)為SKIPIF1<0和SKIPIF1<0(點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的左側(cè)),(1)當(dāng)SKIPIF1<0時(shí),直接寫出與時(shí)間之間的函數(shù)的關(guān)系式;(2)當(dāng)SKIPIF1<0時(shí),求出點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0的坐標(biāo);(3)當(dāng)SKIPIF1<0在SKIPIF1<0部分的最高點(diǎn)到SKIPIF1<0軸的距離為2時(shí),求SKIPIF1<0的值;(4)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0與線段SKIPIF1<0有且僅有一個(gè)公共點(diǎn)時(shí),直接寫出SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)4或-4;(4)SKIPIF1<0或SKIPIF1<0【分析】(1)將m=0代入函數(shù)即可得出結(jié)果;(2)將m=6代入得到函數(shù)解析式,再令y=0即可得到結(jié)果;(3)分兩種情況討論即可:①當(dāng)m>0時(shí),②當(dāng)m<0時(shí);(4)將SKIPIF1<0,SKIPIF1<0分別代入解析式即可得出結(jié)果.【解答】解:(1)SKIPIF1<0(2)將m=6時(shí),代入解析式得到SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0;(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最高點(diǎn)即為SKIPIF1<0,則SKIPIF1<0(舍),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最高點(diǎn)即為SKIPIF1<0,則SKIPIF1<0(舍),SKIPIF1<0,(4)SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,SKIPIF1<0或SKIPIF1<0.【點(diǎn)評】本題主要考查的是分段函數(shù),根據(jù)題目要求正確的分析每個(gè)題是解題的關(guān)鍵.23.當(dāng)SKIPIF1<0值相同時(shí),我們把正比例函數(shù)SKIPIF1<0與反比例函數(shù)SKIPIF1<0叫做“關(guān)聯(lián)函數(shù)",可以通過圖象研究“關(guān)聯(lián)函數(shù)”的性質(zhì).小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),先以SKIPIF1<0與SKIPIF1<0為例對“關(guān)聯(lián)函數(shù)”進(jìn)行了探究.下面是小明的探究過程,請你將它補(bǔ)充完整;(1)如圖,在同一坐標(biāo)系中畫出這兩個(gè)函數(shù)的圖象.設(shè)這兩個(gè)函數(shù)圖象的交點(diǎn)分別為A,B,則點(diǎn)A的坐標(biāo)為(-2,-1),點(diǎn)B的坐標(biāo)為_______.(2)點(diǎn)SKIPIF1<0是函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象上一個(gè)動點(diǎn)(點(diǎn)SKIPIF1<0不與點(diǎn)SKIPIF1<0重合),設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0.①結(jié)論1:作直線SKIPIF1<0分別與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,則在點(diǎn)SKIPIF1<0運(yùn)動的過程中,總有SKIPIF1<0.證明:設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,將點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0的坐標(biāo)代入,得SKIPIF1<0,解得SKIPIF1<0則直線SKIPIF1<0的解析式為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,則點(diǎn)的坐標(biāo)為SKIPIF1<0,同理可求,直線SKIPIF1<0的解析式為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為_________.請你繼續(xù)完成證明SKIPIF1<0的后續(xù)過程:②結(jié)論2:設(shè)SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的函數(shù).請你直接寫出SKIPIF1<0與SKIPIF1<0的函數(shù)表達(dá)式.【答案】(1)SKIPIF1<0;(2)①SKIPIF1<0,SKIPIF1<0;證明見解析;②SKIPIF1<0.【分析】(1)聯(lián)立直線SKIPIF1<0與反比例函數(shù)SKIPIF1<0,然后求解即可;(2)①設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,將點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0的坐標(biāo)代入,然后可得直線SKIPIF1<0的解析式,進(jìn)而可得點(diǎn)C坐標(biāo),同理可得點(diǎn)D坐標(biāo),如圖,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則有SKIPIF1<0,進(jìn)而可進(jìn)行求解;②根據(jù)題意可分兩種情況進(jìn)行分類求解,即當(dāng)SKIPIF1<0時(shí)和當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0的面積為SKIPIF1<0與t的函數(shù)關(guān)系式可求解.【解答】解:(1)∵①與SKIPIF1<0②,聯(lián)立①②解得,SKIPIF1<0(是SKIPIF1<0的縱橫坐標(biāo)),SKIPIF1<0故答案為:SKIPIF1<0;SKIPIF1<0①設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,將點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0的坐標(biāo)代入,得SKIPIF1<0,解得SKIPIF1<0,則直線SKIPIF1<0的解析式為SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,同理.直線SKIPIF1<0的解析式為SKIPIF1<0;令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,如圖,過點(diǎn)SKIPIF1<0作SKIPIF1<0軸于點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論