文稿說(shuō)明教案gre cf_第1頁(yè)
文稿說(shuō)明教案gre cf_第2頁(yè)
文稿說(shuō)明教案gre cf_第3頁(yè)
文稿說(shuō)明教案gre cf_第4頁(yè)
文稿說(shuō)明教案gre cf_第5頁(yè)
已閱讀5頁(yè),還剩50頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

CH. SOMETHINGYOUSHOULDCH. DATASPECIALGENERALCH. COMBINATION&ADDITION&CH. NUMBERODD&PRIME&PRIMEGREATESTCOMMONDIVISOR&LEASTCOMMONCH. BASICRATIOS&CH. -- CERECTANGULARCOORDINATECH. PROBABILITY&CH. CH. SIMULATIONSomeThingYouShould雖然通常被稱作GRE的數(shù)學(xué)部分,QuantReasoning并不是一個(gè)數(shù)學(xué)知識(shí)的考試。和其他部分一樣,Quant關(guān)注的的是邏輯思維,是要求考生能夠應(yīng)用數(shù)學(xué)以及其他的知識(shí),在最短的時(shí)間里解決的問(wèn)題。一直以來(lái),一些考生們往往會(huì)糾結(jié)于自己的數(shù)學(xué)知識(shí)不夠完善,對(duì)數(shù)學(xué)知識(shí)過(guò)于生疏,或者從來(lái)就不解決數(shù)學(xué)問(wèn)題。再或者有一些考生,擁有厚實(shí)的數(shù)學(xué)基礎(chǔ),掌握各種數(shù)學(xué)知識(shí),于是總是期望能夠完全適用自己所掌握的知識(shí)。無(wú)論是哪一類考生,都有一個(gè)共同的特點(diǎn),把掌握的數(shù)學(xué)知識(shí)當(dāng)成了一個(gè)最基本的一個(gè)目標(biāo),但其實(shí)這樣都是偏離了Quant部分的基本目的——快速解決問(wèn)題。請(qǐng)記住,數(shù)學(xué)知識(shí)僅僅是工具之一,但絕不是唯一的工具。除了數(shù)學(xué)知識(shí)意外,我們解決問(wèn)題還需要精巧的思路以及縝密的邏輯。這兩點(diǎn)是解決問(wèn)題的基礎(chǔ)。所謂精巧,就是為了提高解題速度,比如下面的這個(gè)例子:Ex1-.Ifthesumofsevenconsecutiveintegersis434,thenthegreatestofthe7integers作為一道數(shù)學(xué)題,題目當(dāng)中給出了一個(gè)等差數(shù)列,今兒可以想到的就是所有等差數(shù)列的:=S!+=S

!!+!!+!!+!?!進(jìn)而解出a1以上方法可以說(shuō)嚴(yán)格遵守了數(shù)學(xué)知識(shí)的思路,但未必是最簡(jiǎn)單的方法。我們完全可以通過(guò)等差數(shù)列的特點(diǎn)——Median=Mean。因?yàn)轭}中給出了總和以及數(shù)據(jù)個(gè)數(shù),自然可以想到平均數(shù)(中數(shù)),然后+3就可以得到最大的一個(gè)值。那么如果說(shuō)我數(shù)列的或特點(diǎn)什么也不知道應(yīng)該怎么處理呢?仍然是有辦法的,比如我們可以找出一個(gè)簡(jiǎn)單的例子:1,2,3。這和題目給出的數(shù)列有一樣的特點(diǎn),只不過(guò)是被簡(jiǎn)化了,那我們它有什么特點(diǎn)。總和為6,算出平均數(shù)為2,正好是中數(shù),所以我們有理由相信題目當(dāng)中的數(shù)列也可以用相同的思路。至于為什么平均數(shù)等于中數(shù),嚴(yán)謹(jǐn)?shù)淖C明過(guò)程對(duì)于解決Quant問(wèn)題并不重要,那是數(shù)學(xué)家的工作。的時(shí)間也不能忽略。并且隨著步驟的復(fù)雜,出錯(cuò)的概率也會(huì)增加。當(dāng)然這并不意味著純數(shù)學(xué)的方法就完全不好,畢竟我們不能保證每一道題都有巧妙的方法,而且巧妙的辦法如果不能馬上想到而去強(qiáng)求,反而會(huì)耽誤時(shí)間,得不償失。那么當(dāng)我們看到一道題目的時(shí)候,如何開(kāi)始解題呢?這往往是一些考生的一個(gè)最大的問(wèn)題。我們可以把問(wèn)題當(dāng)作一座山的山頂,而解題的過(guò)程就是選擇一條合適的路徑到達(dá)山頂,至于如何到達(dá),我們還要看我們手頭有什么工具。比如我們有一輛汽車,那么就可以選擇一條相對(duì)平坦,但可能略遠(yuǎn)的山路;如果我們有繩索,拐杖,和鐵鉤,那么我們則可以選擇一條相對(duì)陡峭但距離近的路徑;當(dāng)然,如果你能看到不遠(yuǎn)處有一條登山索道,則是更好的選擇。所以,看到一道題目的時(shí)候,首先要充分理解這道題目,而要理解這道題,就需要問(wèn)自己兩個(gè)問(wèn)題:(1)我們的目標(biāo)是什么。(2)關(guān)于這個(gè)目標(biāo),我們已經(jīng)知道了什么。對(duì)于這兩個(gè)問(wèn)題,要嚴(yán)格遵守一個(gè)原則,那就是所有情景一定要嚴(yán)格根據(jù)題目所說(shuō)的情況做判斷,而不能做不符合原題的的判斷。比如下面這個(gè)例子:Ex1-.Reggiewashikingona6-looptrailatarateof2perhour.OnehourintoReggie’shike,Cassiestartedhikingfromthesamestartingpointonthelooptrailat3perhour.WhatistheshortesttimethatCassiecouldhikeonthetrailinordertomeetupwith0.81.22.03.05.0這個(gè)題目問(wèn)兩個(gè)人最短的相遇時(shí)間,所以我們的目標(biāo)就是找到兩人相遇的位置,然后求得在那一點(diǎn)的時(shí)間即可。然后看看我們知道了什么:Reggie以及Cassie的速度,looptrail的長(zhǎng)度,還有Reggie比Cassie提前一小時(shí)出發(fā)。Cassie的速度比較快,所以只要Cassie能夠追上Reggie就可以了。由此可以列出方程:????+??=x=2hourC但在做這個(gè)題目的同時(shí)我們很自然的做了一個(gè)假設(shè),因?yàn)閮扇耸窃谝粋€(gè)起點(diǎn)開(kāi)始出發(fā),那么兩人的行進(jìn)方向也是一致的,但真的是這樣的嗎?題目中沒(méi)有任何一句話規(guī)定兩人行進(jìn)方向一致,所以,方向相反,算出相遇也是可以的,并且由于路徑是環(huán)形的,相遇時(shí)所用時(shí)間應(yīng)該更短,然后列出方程????+????+??=解得x=0.8hour。題目中問(wèn)的是最短的時(shí)間,所以正確答案應(yīng)該是0.8hour選A這道題目的難度并不是太大,但錯(cuò)誤率遠(yuǎn)遠(yuǎn)大于它的難度所應(yīng)匹配的錯(cuò)誤率,而且錯(cuò)選的同學(xué)應(yīng)該基本都選的C,原因就在于我們?cè)谧x題的時(shí)候沒(méi)有理解好題目所問(wèn)的問(wèn)題,并且錯(cuò)誤的帶入自己的假設(shè)。所以,題目中沒(méi)有提到的條件不能默認(rèn)。其實(shí)在讀題的時(shí)候可以發(fā)現(xiàn),它的問(wèn)題是shortestime,所以極有可能有不同的情況出現(xiàn),分類討論的思想要時(shí)刻在頭腦中浮現(xiàn),以避免漏判的情況。這是最簡(jiǎn)單直接的一種做題方法。因?yàn)槲覀兊哪康氖墙鉀Q問(wèn)題,所以如果通過(guò)舉幾個(gè)例子就能夠解決問(wèn)題,那將是非常節(jié)省時(shí)間的。除了清楚明白題目所拋出的問(wèn)題以及提供的條件,為了解決看到題不知道如何下手的情況,翻譯也是一個(gè)利器。這里所說(shuō)的翻譯當(dāng)然不是把英文的題目翻譯成中文,翻譯成中文對(duì)于做題沒(méi)有任何作用,反而可能會(huì)對(duì)自己產(chǎn)生一種依賴,就是一定要翻譯成漢語(yǔ)才能做題。這畢竟是用英文的考試,如果在考試當(dāng)中要先把英語(yǔ)翻譯成中文再做題,必然會(huì)耽誤很多時(shí)間。這里所說(shuō)的翻譯是把文字語(yǔ)言翻譯成數(shù)學(xué)語(yǔ)言。之前提到過(guò),這是一個(gè)需要運(yùn)用數(shù)學(xué)知識(shí)的考試,但我們所學(xué)到的所有數(shù)學(xué)知識(shí)智能應(yīng)用在數(shù)學(xué)表達(dá)式,而對(duì)文字為力。面對(duì)文字越來(lái)越多的出題趨勢(shì),準(zhǔn)確地把文字語(yǔ)言翻譯成數(shù)學(xué)語(yǔ)言的能力就顯得十分重要,并且在翻譯成數(shù)學(xué)語(yǔ)言以后,往往可以讓我們看到一些文字無(wú)法表達(dá)出來(lái)的隱含條件。Classificationand相較于之前的兩種解題方法,分類討論以及數(shù)形結(jié)合應(yīng)用不是特別廣泛,但也是非常有效地做題方法,以后會(huì)通過(guò)相應(yīng)的題目來(lái)具體說(shuō)明這兩種方法。對(duì)于GRE的數(shù)學(xué)題,有些同學(xué)對(duì)知識(shí)本身可能并沒(méi)有太大,但依舊做不出來(lái)題目就是因?yàn)檎Z(yǔ)言的問(wèn)題了。之前也,把題目讀懂弄明白是做題的基礎(chǔ),所以我們就有必要在掌握讀題技巧,確保能夠首先把題目讀懂。想要讀懂一個(gè)比較長(zhǎng)的題目,對(duì)句子結(jié)構(gòu)的分析顯得尤為重要,那么我們就首先來(lái)看一下句子的結(jié)構(gòu)都有哪些。 主謂雙賓語(yǔ) 并列句 Table2-1.Structuresof可以看到所有句子結(jié)構(gòu)必備的成分是主語(yǔ)和謂語(yǔ)。那么我們?cè)诜治鼍渥咏Y(jié)構(gòu)的時(shí)候可以先去尋找主干的謂語(yǔ)動(dòng)詞,因?yàn)橐粋€(gè)句子的就在于謂語(yǔ)動(dòng)詞,它決定了這個(gè)句子的意思;謂語(yǔ)動(dòng)詞的單詞數(shù)量也比較少,一般不超過(guò)3-‐‐4個(gè)單詞,很多句子都是一個(gè)單詞。而主語(yǔ)賓語(yǔ)這些名詞詞性的成分會(huì)有很多修飾成分或從句,所以會(huì)顯得比較長(zhǎng),進(jìn)而是整個(gè)句子結(jié)構(gòu)變得。其實(shí)一個(gè)句子的成分最多就是有6部分:主謂賓,定狀補(bǔ)。按照我們剛才所說(shuō),可以完成一個(gè)讀句子的流程圖:Figure2-1.Flowchartof 可以作修飾成分的內(nèi)容有很多,包括現(xiàn)在分詞,過(guò)去分詞,不定式,以及介賓短語(yǔ)等。位置可以放在名次前后或句子前后,用來(lái)修飾某個(gè)名詞或句子,比如:Runningattheirrespectiveconstantrates,MachineXtakes2dayslongertoproducewidgetsthanMachineY.Attheserates,Ifthetwomachinestogetherproduce……,how………Asquarewoodenquehasasquarebrasinlayinthecenter,leavingawoodenstripuniformwidtharoundthebrasssquare.If…………,whichofthefollowingcouldWorkingalone,PrintersX,Y,andZcandoacertainprintingjob,consistingofalargeofpages,in12,15,and18hours,respectively.從句有名詞性從句和形容詞性從句。名詞性從句作句子主干成分,形容詞性從句起修飾成分。在數(shù)學(xué)考試當(dāng)中,名詞性從句比較少,而形容詞性從句比比皆是,比如定語(yǔ)從句,條件狀語(yǔ)從句。從句不能單獨(dú)獨(dú)立存在,必須依靠一個(gè)主句。并且從句既然是個(gè)句子,同樣也需要有之前所說(shuō)的完整句子結(jié)構(gòu)。定語(yǔ)從句跟在名詞之后,起修飾之前名詞的作用。在讀數(shù)學(xué)題的時(shí)候,一定要有意識(shí)的把定語(yǔ)從句和主干成分剝離,不能把主干和定語(yǔ)從句。Oneweekacertaintruckrentallothadatotal20trucks,allofwhichwereonthelotMondaymorning.The mendedpulserateR,whenexercising,for whoisxyearsageisgivenbythe狀語(yǔ)從句在數(shù)學(xué)考試當(dāng)中最多是以條件狀語(yǔ)從句的形式出現(xiàn),大部分題目的條件基本上都會(huì)有條件狀語(yǔ)從句的存在。條件狀語(yǔ)從句的內(nèi)容就是這個(gè)題目的。If18is15percentof30percentofacertainnumber,whatisthe thatshipsboxestoatotalof12distributioncentersusescolorcodingtoidentifyeachcenter.Ifeitherasinglecolororapairoftwodifferentcolorsischosentorepresenteachcenterandifeachcenterisuniquelyrepresentedbythat……If50percentofthetrucksthatwererentedoutduringtheweekwerereturnedtothelotorbefore……,andiftherewereatleast12trucksonthelotthatCombination&排列組合往往被認(rèn)為是一部分難度很大的知識(shí)點(diǎn)。確實(shí),如果沒(méi)有學(xué)過(guò)關(guān)于這部分的知識(shí)的話,確實(shí)是難以入手,尤其是在不知道關(guān)于C&P的運(yùn)算的情況下,更是難以入手。既然如此,我們則可以嘗試減少使用排列組合運(yùn)算,試著的用純思維的方式來(lái)解決問(wèn)題,以降低難度,方便理解,進(jìn)而充分了解排列組合的運(yùn)算Combination——Addand加法原理和乘法原理是排列組合的邏輯基礎(chǔ)。加法就是OR,乘法就是AND假設(shè)我們要點(diǎn)一個(gè)個(gè)性化的pizza,可以自己選擇所加的材料。其中肉有85種,醬汁有3種。如果肉,蔬菜,和醬汁都必須且只能選一種,那么一共可以做出多少種pizza?一個(gè)pizza是由肉,菜,和醬汁構(gòu)成的,如果要問(wèn)一共有多少種組合的話,實(shí)際上就是在問(wèn)pizza的這三個(gè)元素各有多少種選擇。首先,肉有8種,只選一種那我們的選擇有pepperoniORsausageORbacon…注意在OR111,一共八個(gè)1,就是8種選擇。同樣的道理,蔬菜就是5種選擇,醬汁有3種選擇。Figure4-1.Exampleofadditionand清楚每一種材料有幾種選擇之后,我們要來(lái)組成一個(gè)完整的pizza,添加醬汁AND肉AND蔬菜。注意這里,步驟與步驟之間用的是AND連接,所以用的是乘法,由每一種材料的可能性相乘,得到8×5×3=120.所以一共就是有120種可能。題目當(dāng)中,并不會(huì)出現(xiàn)特別明顯的AND或是OR的標(biāo)志,往往需要我們根據(jù)實(shí)際情況去做判斷。一般來(lái)說(shuō),步驟之間是AND連接,另一種可能則是OR。我們通常可以把組合當(dāng)成是一個(gè)個(gè)要做的的決定,我們的主要目的也就是看看每一種決定會(huì)有幾種可能的結(jié)果。Ex.3--‐Anofficemanagermustchooseafve-digitlockcodefortheofficedoor.Thefirstandlastdigitsofthecodemustbeodd,andnorepetitionofdigitsisallowed.Howmanydifferentlockcodesarepossible?按照chapterone所說(shuō)的方法,尋找目標(biāo):算出一共有多少種可能的滿足條件的密碼。如何達(dá)到目標(biāo):構(gòu)成一共5個(gè)步驟,看看每一位數(shù)有幾種可能。因?yàn)檫@里是5 1stDigit2nd 3rd 4th 5th剩下的任務(wù)就是看看每一個(gè)數(shù)為有幾種可能。首先首位和末位必須為odd,且每一位不能重復(fù),所以: 1stDigit2nd 3rd 4th 5th因?yàn)槭孜矁晌挥玫袅藘蓚€(gè)數(shù),2ndDigit只有8種選擇,依此類推,3rdDigit有7種,4thDigit有6種。 1stDigit2nd 3rd 4th 5th在做排列組合的題目時(shí),一般要先考慮特殊元素,再考慮一般元素。比如上題,如果按照順序,第2,3,和4位并不能保證所選的數(shù)字的奇偶性,這樣在最后一位的時(shí)候,我們就不能得到一個(gè)確切的數(shù)字,必須進(jìn)行分類討論,這樣就會(huì)增加巨大的計(jì)算量。這是排列組合體目的一個(gè)基本原則。詞在于挑(pick),選(decide),而排列更關(guān)注固定個(gè)數(shù)元素可以構(gòu)成多少不同的順Ex.3-.Howmanydistinguishwaytoarrange5studentsinaFigure4-2.Exampleof根據(jù)igure3-‐‐2,每分配一個(gè)spot,分別有5,4,3,2,和1種可能,按照之前所講的乘法原則,每分配一個(gè)spot都是排隊(duì)的一個(gè)步驟,所以步驟與步驟之間用的應(yīng)該是乘法,5×4×3×2×1=!,進(jìn)而得到一個(gè)結(jié)論:在沒(méi)有任何限制的情況下,排列n個(gè)不同元素的結(jié)果就是n!。Arrangementwith剛才的例子當(dāng)中,5個(gè)學(xué)生都是不同的元素,那么如果元素當(dāng)中有重復(fù)呢?比如下面的問(wèn)題:Ex3--.Howmanyarrangementsarethereofthelettersintheword 我們發(fā)現(xiàn)一共只有3種不同的排列,并不是3!=6種,原因就是其中有兩個(gè)重復(fù)元?jiǎng)t發(fā)現(xiàn)一共是6種不同的排列,但兩個(gè)E實(shí)際上是一樣的,也就是說(shuō),重復(fù)元素有多少種順序,重復(fù)的排列就會(huì)有多少種,所以為了得到不重復(fù)的排列,需要拿總排列除以重復(fù)元素的順序數(shù),即重復(fù)元素的個(gè)數(shù)階乘。3!/2!。重復(fù)元素運(yùn)算規(guī)則:有幾種重復(fù)元素就做幾次除法,一種重復(fù)元素有幾個(gè),就除以幾的階乘。AdvancedArrangementand之前我們了解了一些關(guān)于組合的內(nèi)容,但都是些比較基礎(chǔ)的內(nèi)容,比如之前關(guān)于pizza的例子,有一個(gè)前提條件就是肉,蔬菜,和醬汁每樣食材只選一種。但如果每樣可以不只選一種呢?pizza,82種,52種,31種,那么可以做成多少種pizza?目標(biāo):同樣還是做 AND連接,需要分析每一個(gè)步驟有幾種可能。先看肉,與之前不同,這次可以選2種。我們就可以把812345678根據(jù)上面的表格,我們把八種肉分別編號(hào)1.深色是被選中的,而淺色是沒(méi)有被選中的。原本的8種肉變成只有兩類,然后再看有幾種不同的排列。8個(gè)元素,兩種重復(fù)元素,一種有兩個(gè),一種有六個(gè),那么總的可能數(shù)就是8選2:??!×同樣的道理,蔬菜的可能數(shù)5選??!×3??!×所得的結(jié)果根據(jù)乘法原理相乘,即可得到答案。再來(lái)看一個(gè)例子Ex.3--‐.Howmanydistinguishwaytoarrange5studentsin8這個(gè)題與Ex3-‐35個(gè)spot站個(gè)人。而這個(gè)題目給定了8個(gè)spot12345678深色的位置是被5個(gè)不同的學(xué)生占用的占用的,而淺色的是沒(méi)有被占用的,最后的結(jié)果是8選5:5??!但這并不是最終的結(jié)果,因 5??!×類,所以在選出的5個(gè)學(xué)生當(dāng)中,我們還要進(jìn)行一次排列,即5!。那么 和5!??!×??!×

×P&C在排列組合的運(yùn)算中,我們用P和C來(lái)代表各自的運(yùn)算。P代表permutation(排列),C代表combination(組合)。手寫(xiě)為:????and 其中m表示所排列或組合的總數(shù),n代表需要排列或組合的個(gè)數(shù)。我們由最基礎(chǔ)的入手——m個(gè)原素的全排列,即總數(shù)為m,所需排列的個(gè)數(shù)也是m。????=如果有重復(fù)元素,有幾種重復(fù)元素就做幾次除法,一種重復(fù)元素有幾個(gè),就除以幾的階乘。再來(lái)看????。????代表的意義為總數(shù)為mm個(gè)元素當(dāng)中選取n 把所有m個(gè)元素分為兩類,所選和不被選,元素個(gè)數(shù)分別是n個(gè)和m-‐‐n個(gè),這樣就會(huì)出現(xiàn)兩種重復(fù)元素,一種有n個(gè),一種有m–n個(gè),根據(jù)重復(fù)元素的運(yùn)算規(guī)律:???? ???? 最后來(lái)看????.這個(gè)運(yùn)算實(shí)際上是有兩個(gè)步驟,首先在m個(gè)元素當(dāng)中選出n個(gè),在把????=???? ?????? ???! Howmanydiagonalsdoesapolygonswithtwelvevertexeshave?Arestaurant hasseveraloptionsfortacos.Thereare3typesofss,4typesofmeat,3typesofcheese,and5typesofsalsa.Howmanydistincttacoscanbeorderedassumingthatanyordercontainsexactlyoneofeachoftheabovechoices?Ahistoryexamfeatures5questions.3ofthequestionsaremliple-chicewithfouroptionseach.Theothertwoquestionsaretrueorfalse.IfCarolineselectsoneanswerforeveryquestion,howmanydifferentwayscansheanswertheexam?Fivestudentsinaclassroomarelininguponebehindtheotherforrecess.Howmanydifferentlinesarepossible?AnItalianrestaurantboasts320distinctpastadishes.Eachdishcontainsexactlyonepasta,onemeat,andonesauce.Ifthereare8pastasand4meatsavailable,howmanysaucesaretheretochoosefrom?Ifmisanevenintegergreaterthan2000thatiscomposedfrom1,2,3,and4withnorepetition,howmanypossibilitiesofm?Howmanyfve-digitpositiveintegerscanbeformedusingthedigits5,6,7,8,9,and0ifnodigitscanberepeated?Agroupof12peoplewhohavenevermetareinaclassroom.HowmanyhandshakesareexchangedifeachpairshakeshandsexactlyInhowmanywayscanthewordMISSISSIPPIbe

Metanstopaintaroomwithsixcolorsofpaint.IfMetamustusewhitepaint,howmany Howmanydistinguishedwaytoarrangetheword“ORDER”ifthereareatleasttwolettersbetweentwo“R”s?Agardenerwishestont5bushesinstraightrow.Eachbushhasflowersofadifferentsolidcolor(white,yellow,pink,red,andpurple).Howmanywayscanthebushesbearrangedsothatmiddlebushistheonewithredflowers?Inaseriesofraces,10toycarsareraced,2carsatatime.Ifeachcarmustraceeachoftheothercarsexactlytwice,howmanyracesmustbeheld?Inameetingof3representativesfromeachof6differentcompanies,each handswithevery notfromhisorher .Iftherepresentativesdidnotshakehandswithpeoplefromtheirown,howmanyhandshakestookInacertainclassof20studentswithdifferentinitialsofsurname,therosterisarrangedbytheorderofinitialofsurnames.Ifthreestudentsareselectedtojoinaseminar,howmanydifferentwaystoselectthemwhoseinitialofsurnamesarenotneartoeachother?Therearefivepointsonlinel1andfourpointsonl2.Ifl1andl2areparallel,howmanydifferenttrianglescanbeconstructedbasedontheseninepoints?Amanwalkstohishomefromhiscurrentlocationontherectangulargridshown.Ifhemaychoosetowalknorthoreastatanycorner,butmaynevermovessouthorwest,howmanydifferentpathscanthemantaketogethome

RighttrianglePQRistobeconstructedinthe-nesothattherightangleisatPandPRisparalleltothex--s.ThexandycoordinatesofP,Q,andRaretobeintegersthatsatisfytheinequalities--‐4≤x≤5,6≤y≤16.Howmanydifferenttriangleswiththesepropertiescouldbeconstructed?基本數(shù)論是Quant部分一個(gè)的重點(diǎn),許多題目都是基于數(shù)的一些特征而出,但這一部分的很多內(nèi)容是我們小學(xué)學(xué)的,并且平時(shí)解決數(shù)學(xué)問(wèn)題的時(shí)候不太常用,所以很多內(nèi)容都已經(jīng)以往,我以我們需要回顧下知識(shí)點(diǎn),勾起大家遠(yuǎn)古的回憶。。既然是研究數(shù),我們首先將數(shù)進(jìn)行分類。Figure5-1.Classificationof Odd&奇數(shù)和偶數(shù)是大家非常熟悉的概念,它是作為整數(shù)下的一個(gè)分類,所以只有整數(shù)有奇偶性。有一種我們常用的解題方法非常適合奇偶性的題目,就是試數(shù)。因?yàn)槠媾紨?shù)的特點(diǎn)具有普遍性,所以取任意的一個(gè)奇偶數(shù)去做驗(yàn)證,都可以證明我們所需要的結(jié)果。奇偶數(shù)??康闹R(shí)點(diǎn)無(wú)非就是給定的數(shù)加減乘除以后的奇偶性。我們可以總結(jié)出以下結(jié)論:Odd±Even= Odd×Odd=Odd±Odd= Even×Even=Even±Even= Odd×Even= 2n,nis 2n±1,nisTable5-1.TranslationofevenandoddEx.4--‐.Ifaandbarebothpositiveintegers,anda–banda/bareeven,whichoffollowingmustbeanoddinteger?(a+(a+(b+Prime&質(zhì)數(shù)也是一個(gè)整數(shù)的分類,并且只存在于大于等于2的數(shù)中。只能被1和它本身整除的數(shù)叫質(zhì)數(shù)。最小的質(zhì)數(shù)是2,且2是唯一一個(gè)偶質(zhì)數(shù),其他所有質(zhì)數(shù)都是奇數(shù)。指數(shù)并沒(méi)有確切的數(shù)學(xué)語(yǔ)言可以表示,因?yàn)橘|(zhì)數(shù)沒(méi)有一個(gè)明顯的規(guī)律可循。幸運(yùn)的是,質(zhì)數(shù)的考察點(diǎn)在于分解質(zhì)因數(shù)和質(zhì)數(shù)的奇偶性。分解質(zhì)因數(shù)就是把一個(gè)和數(shù)分解成質(zhì)數(shù)相成的形式。最普通的分解質(zhì)因數(shù)的方法是:反復(fù)用2除這個(gè)和數(shù)直至不能被2整除,再反復(fù)用3除,依此類推。但這并不是一個(gè)合理的方法,因?yàn)榇蠖鄶?shù)要求分解質(zhì)因數(shù)的數(shù)都可以找到一定的規(guī)律。Ex4-2.factor,multiple,和divisorEx4--.Ifyisthesmallestpositiveintegersuchthat3150multipliedbyyisthesquareofaninteger,thenymustbe?GreatestCommonDivisor&LeastCommon求最大公約數(shù)和最小公倍數(shù)是分解質(zhì)因數(shù)的一個(gè)應(yīng)用。方法為:E.4-‐4.IfMistheleastcommonmultipleof90,196,and300,whichofthefollowingisNOTafactorofM?任何除法運(yùn)算都可以產(chǎn)生余數(shù)(如果整除,余數(shù)為0)y÷x=k……y=kx+yisdivisibleby5,yy=5n0nTheremainderis6whenxisdividedby11x11n6,nn的具體值是Figure5-2.Mechanismof由上圖可以看出,余數(shù)是一組循環(huán)的數(shù),這組循環(huán)的數(shù)由0開(kāi)始到比除數(shù)少1的數(shù)。并Addition&MultiplicationofEx4-.Iftheremainderis4when13dividenandiftheremainderis10whenmisdividedby13,whatistheremainderwhen2n–3isdividedbyn–misdividedbyn+misdividedby2n3132n13313的余數(shù),2n13就是2除以13n13243=同理可得n–m除以13的余數(shù)為-6,而n+m除以13的余數(shù)為14。但我們知道余數(shù)是不能出現(xiàn)負(fù)數(shù),或比除數(shù)大,所以,如果出現(xiàn)負(fù)數(shù),我們就加上除數(shù)取得正數(shù);如果大于除數(shù),就減掉一個(gè)除數(shù),使余數(shù)小于除數(shù)。首先除數(shù)不同就不再符合加減法和乘法的運(yùn)算,但是我們可以把不同除數(shù)的運(yùn)算轉(zhuǎn)化成除數(shù)相同的運(yùn)算。比如我們看下同時(shí)滿足除以7余1和除以3余2的數(shù)÷7=n18÷325 Table5-2.Remainderofdual我們可以發(fā)現(xiàn),同時(shí)滿足以上兩個(gè)余數(shù)條件的被除數(shù)之間的差為21,正好是兩個(gè)除數(shù)的最小公倍數(shù)。yK(n1BKn為整數(shù),B為第一個(gè)同時(shí)滿足所有數(shù)的指數(shù)運(yùn)算的個(gè)位數(shù)都是一個(gè)循環(huán),并且無(wú)論這個(gè)數(shù)有多大,只跟個(gè)位數(shù)有關(guān)。n 0 1 2 3 6 7 Table5-3.Unitsdigitsof Calculatetheremainderifthefollowingnumbersofformulasaredividedby16iftheremainderis7if16dividesx.(1)(2)5x–23x+32x+Calculatetheunitsdigitandtheremainderwhen5dividesfollowingnumbers.(1)(2)234x+3+ Ifnandkareintegerswhoseproductis400,whichofthefollowingstatementsmustbetrue?n+k>n≠EithernorkisamultipleofIfniseven,thenkisIfnisodd,thenkisHowmanyfactorsdoes360Integerxislessthan50.Iftheremainderis3whenxisdividedby5,andiftheremainderis5whenxisdividedby6,whatistheremainderwhenxisdividedby7?Whatistheunitdigitof55+65+75+Whatisthegreatestprimefactorof164+Integern=25*34*53*72*11.Howmanyfactorsdoesnhave?代數(shù)部分在整個(gè)Quant中占的比例很大,但是難度較低,基本都在初中的代數(shù)水平,主要難度在于文字題篇幅較大,語(yǔ)言復(fù)雜,容易造提的問(wèn)題;再就是大家的計(jì)算能力逐漸下降,遇到題不是不會(huì),而是列出正確的式子而解不對(duì)。這樣的錯(cuò)題是非??上У模栽谧鲞@一章的題目的時(shí)候,大家一定不要以列出式子為最終目的,認(rèn)為解方程之類的問(wèn)題肯定會(huì)就在平時(shí)忽略,平時(shí)不聯(lián)系,考試更容易出錯(cuò)。Exponentialam×an=am÷an=(am)n=am×bm=am÷bmEx6-

??????=Ex.6-‐Acertaintheaterhas100balconyseats.Forevery$2increaseinthepriceofabalconyseatabove$10,5fewerseatswillbesold.Ifallthebalconyseatsaresoldwhenthepriceofeachseatis$10,whichofthefollowingcouldbethepriceofabalconyseatiftherevenuefromthesaleofbalconyseatsis$1360?有兩種數(shù)列:Arithmeticsequence&Geometric????=????+?????????

??(????+????=??Ex5--.Ifthesumof7consecutiveintegersis434,thenthegreatestofthe7integersRatiosandEx5-‐3.Translatethe llanguageintomathematicAcertaininvestmentwaspdollar,whatisthetotalamountatsecondyeariftheannualcompoundinterestratewaskpercent?Acoat’soriginalpriceof$112wasreducedby20percentforasale.Ifthesalepricewasthenreducedby20percent,whichofthefollowingexpressesthepriceofthecoatafterthesecondpricereduction?OnJanuary1,1994,JillinvestedPdollarsinanaccountthatpaysinterestatarateof8percentperyear,compoundedannuallyonDecember31.Iftherewerenootherdepositsorwithdrawalsintheaccount,howmanydollarswereintheaccountonJanuary1,1998,intermsofP?集合類的題目有兩種,一種使用Venn圖,另外就是表格。一般類的集合題用Venn圖Ex5-‐4.判斷下面的題目需要用VennAlltraineesinacertainviatr-traiingprogrammusttakebothawrittentestandflighttest.If70percentofthetraineespassedthewrittentest,and80percentofthetraineespassedtheflighttestwhatpercentofthetraineespassedbothtests?10percentofthetraineesdidnotpasseither20percentofthetraineespassedonlytheflight2.Ashipmentofbannerscontainsbannersoftwodifferentshapes,triangularandsquare,andtwodifferentcolors,redandgreen.Inaparticularshipment26%ofthebannersaresquareand35%ofthebannersarered.If60%oftheredbannersintheshipmentaresquare,whatistheratioofredtriangularbannerstogreentriangularbanners?對(duì)于Venn圖,常考的有兩種,即兩個(gè)圈的和三個(gè)圈的,主要內(nèi)容就是兩個(gè)??∪??=??+?????∩??∪??∪??=??+??+?????∩?????∩?????∩??+??∩??∩除了套用,有些題目需要把圖像畫(huà)出來(lái),然后把不需要的區(qū)域減去來(lái)獲得我們所需要的區(qū)域。Thefunctionf(x)isdefinedforeachpositivethre-digitintegernbyf(n)=2x3y5z,wherex,y,andzarehundreds,tens,andunitsdigitsofn,respectively.Ifmandvarethre-itpositiveintegerssuchthatf(m)=9f(v),thenwhatisthevalueofm–v?Ifthesumoftwopositiveintegersis24andthedifferenceoftheirsquaresis48,whatistheproductofthetwointegers?Threetypesofpencils,J,K,andL,cost$0.10,and$0.25each,respectively.Ifaboxof32ofthesepencilscostsatotalof$3.40andiftherearetwiceasmanyKpencilsasLpencilsinthebox,howmanyJpencilsareinthebox?IfDr.Joneshad eadoctor10yearsearlierthanhedid,hewouldhavebeena

asale,themerchantdiscountedthesellingpriceby20percentandsoldthejacket.Whatwasthemerchant’sgrossprofitonthissale?Inamarketingsurveyforproductssomepeoplewereaskedwhichoftheproducts,ifany,theyuse.Ofthepeoplesurveyed,atotalof400useA,atotalof400useB,atotalof450useC,atotalof200useAandBsimultaneously,atotalof175useBandCsimultaneously,atotalof200useCandAsimultaneously,atotalof75useA,B,andCsimultaneously,andatotalof200usenoneoftheproducts.Howmanypeopleweresurveyed?If1050–74iswrittenasanintegerisbasedecimalnotation,whatisthesumofthedigitsinthatinteger?doctorforexactly2/3ofhislife,IfDr.Jones

isaterminatingdecimal,whatiseadoctor10yearslaterthanhedid,wouldhavebeenadoctorforexactly1/3ofhislife,howmanyyearsdidDr.Joneslive?Whichofthefollowinginequalitieshasasolutionsetthat,whengraphedinthenumberline,isasinglelinesegmentoffinitelength?X4≥16X3≤X2≥2≤|x|≤2≤3x+4≤

leastvalueofpositiveintegerAtMegalomaniaIndustries,factoryworkerswerepaid$20perhourin1990and$10perhourin2000.TheCEOofMegalomaniaIndustrieswaspaid$5millionperyearin1990and$50millionperyearin2000.ThepercentincreaseinthepayofMegalomania’sCEOfrom1990to2000waswhatpercentgreaterthanthepercentdecreaseinthehourlypayofMegalomania’sfactoryworkersoverthesameForallrealnumbersv,theoperationv*isdefinedbytheequationv*=v–(1/3)v.If(v*)*=8,thenv= Ifd=

isexpressedasaInacertainsequence,thefirsttermis1,andeachsuccessivetermis1morethanthereciprocalofthetermthatimmediayprecedesit.WhatisthefifthtermoftheIfa1=200andifan+1=200+(1/5)an,whatapproximaythe umvalueofan?Amerchantpurchasedajacketfor$60andthendeterminedasellingpricethatequaledthepurchasepriceofthejacketplusamarkupthatwas25percentofthesellingprice.During

decimal,howmanynonzerodigitswilldThechargeforasingleroomatHoPis25percentlessthanthechargeforasingleroomatHoRand10percentlessthanthechargeforasingleroomatHoG.ThechargeforasingleroomatHoRiswhatpercentgreaterthanthechargeforasingleroomatHoG?Onacertaintransatlanticcrossing,percentofaship’spassengersheldroun‐‐tripticketsandalsotooktheircarsabroadtheship.If60percentofthepassengerswithroun-rpticketsdidnottaketheircarsabroadtheship,whatpercentoftheship’spassengersheldround-rp

Sixmachines,eachworkingatthesameconstantrate,togethercancompleteacertainjobin12days.Howmanyadditionalmachines,eachworkingatthesameconstantrate,willbeneededtocompletethejobin8days?Inacertainclass,10studentscanythepiano,14studentscanytheviolin,11studentscanytheflute.If3studentscanyexactlythreeinstruments,20studentscanyexactlyoneinstrument,howmanystudentscanyexactlytwo幾何部分應(yīng)該是Quant部分最簡(jiǎn)單的一部分,因?yàn)?內(nèi)容不會(huì)超過(guò)初中的知識(shí)水平, 直線之間兩種關(guān)系:parallel&cross,還有一種特殊的香蕉關(guān)系,perpendicular。鈍角三角形中,最長(zhǎng)邊的平方大于另外兩條邊的平方和;直角三角形中,勾股定理;銳角三角形中,任意一條邊的平方小于另外兩條邊的平方。特殊三角形的邊長(zhǎng)比。內(nèi)角和=(n-2)× 弧 2倍;SolidneRectangularCoordinate直線方程,y=kx+b; Aladder25feetlongisleaningagainstawallthatisperpendiculartolevelground.Thebottomoftheladderis7feetfromthebaseofthewall.Ifthetopoftheladderslipsdown4feet,howmanyfeetwillthebottomoftheladderslip?EC

Inthexy-ne,linenpassesthroughtheoriginandhasslope4.Ifpoints(d,c)areonlinen,whatisthevalueofc/d?Anisoscelestriangleliesontherectangularcoordinatene,thecoordinatesofpointAare(0,0),andthecoordinatesofpointBare(3,1),pointCcouldlieatoneof6positionssuchthat(1,3),--1,3),(-3,1),--1,--3),(1,--3),(3,--1.HowmanylengthsofsideBCare Inthefigureabove,AB=BC=CD=DE,alltrianglesarerighttriangles.IfAE=10,whatisthelengthofAB?Intherectangularcoordinatesystemabove,bothoftwotangentcirclesaretangenttothex-as.Iftheradiiofthetwocirclesare4and6,respectively,whatistheslopeofthelineonwhichtwocenterslie?Inanobtusetriangle,iftwosidesare9and40,whatisthelengthoftheunknownone?DF Inthefigureshownabove,foldtherectanglealoneAF,andpointDlaunchatEwhichseparateBCintotwopart.BE=6,EC=2.WhatisthevalueofAE:EF?Quant的概率題只有一種概型——古典概型,即所有可能出現(xiàn)的情況放在分母,題目所有球的情況放分子,大家覺(jué)著概率題難度大其實(shí)并不在概率,而是概率題所用的其它知識(shí)點(diǎn),例如排列組合等。ArithmeticMean:所有數(shù)據(jù)之和除以數(shù)據(jù)個(gè)數(shù)。 將所有數(shù)據(jù)從小到大排列,中間位置的數(shù)為中數(shù),若數(shù)據(jù)為偶數(shù)個(gè),中數(shù)為中間的兩個(gè)數(shù)據(jù)的平均數(shù)。 Mode:一組數(shù)中出現(xiàn)頻率最高的數(shù),一組數(shù)據(jù)中可能不只有一個(gè)mode。Range:一組數(shù)據(jù)最大值 StandardDeviation:SquarerootofVariance.NormalDistribution:Probabilitydensityfunction.

μ=16;σ=μ=23;σ=μ=12;σ=0024681012141618202224262830323436ChartChart8-‐.Inthechartabove,therearethreegraphsofnormaldistributionwithalternativevalueofμandσthatdeterminepositionandwidenessofthegraphs.Thedashlinesshowthepositionofmeanvalue(μ).μ---2σ,μ+μ---σ,μ+0171921232527293133Chart8-‐Inanygraphofnormaldistribution,theareaoftheintervalfromμ–σtoμσisconstant68%,andtheareaoftheintervalfromμ–2σtoμ+2σisconstantSixcardsnumberedfrom1to6arecedinanemptybowl.Firstonecardisdrawnandthenputbackintothebowl;thenasecondcardisdrawn.Ifthecardsaredrawnatrandomandifthesumofthenumbersonthecardsis8,whatistheprobabilitythatoneofthetwocardsdrawnisnumbered5?Ifnisaintegerfrom1to96,inclusive,whatistheprobabilitythatn(n+1)(n+2)isdivisiblebyxisrealnumberfrom0to2,inclusive,andyisrealnumberfrom0to6,inclusive.Whatistheprobabilitythatxisgreaterthany?20beanswereinasackinwhich5ofthemaregreen.Mostly,howmanyyellowbeanscanbeinthesackiftheprobabilitythatagreenoryellowbeanwasrandomlypickedislessthanTheleastandgreatestnumbersinlalistof7realnumbersare2and20,respectively.Themedianofthelistis6,andthenumber3occursmostofteninthelist.Whichofthefollowingcouldbetheaverageofthenumbersinthelist?

Thenumbersofdefectsinthefirstfivecarstocomethroughanewproductionlineare9,7,10,4,and6,respectively.Ifthesixthcarthroughtheproductionlinehas3,7,or12defects,forwhichofthesevaluesdoesthemeannumberofdefectspercarforthefirstsixcarsequalthemedian? Inagroupofpeople,theaverageheightis1.75m,if68%ofthemliewithinonestandarddeviation,andif95%ofthemliewithintwostandarddeviation,whatistheprobabilitythattheheightofa is1.80mto1.85mifthestandarddeviationis0.05m?CCHAPTER.SETANDSEQUENCEArithmeticsequenceGeometricsequenceSubsetInclusiveExclusiveCOMBINATIONANDPERMUTATIONCombinationPermutationArrangementProbabilityPossibilityCommondivisorCommonCommondivisorCommonmultipleConsecutiveDigitDivideDivisibleFactorHundredsIntegerIrrationalMultipleNaturalnumberPrimefactorPrimeQuotientRationalRealnumberRemainderTensdigitTenthsdigitUnitsdigitBUSSINESSCompoundinterestDiscountDownpaymentInterestListedMarginMarkupMarkdownProfit

PurchasingPurchasingRetailSalepriceSimpleinterestAdditionArithmeticClosestapproximationDecimalDefineDenominatorDenoteDepreciationProportionalDistinctExpressionExponentialFactorialFractionIntermsInverselyproportionLeastpossibleNumeratorPercapitaRatioReciprocalRoundedSuccessiveGEOMETRYAcuteAltitudeBisectorCenterChordCircleCircumferenceCircumscribeCircumferentialangleClockwiseConcentriccircleCongruentCoordinateCounterclockwiseEquilalParallelPerpendicularQuadrilaRegularRectangularRightNUMBERSMono-Di-‐/bi--Tri--Tetra--Penta--Hexa--Hepta--Octa--Nona-Deca-CCHAPTER.AVERAGEVEHICLEOCCUPANCYRATEFORCOMMUTERSTOPANDITSSIXSUBURBANCityCountyAVERAGEVEHICLEOCCUPANCYRATEFORCOMMUTERSTOPANDITSSIXSUBURBANCityCountyCountyCountyIfthetotalnumberofcommuterstoCountyWistwicethenumbertoCountyZ,andiftheaveragenumberofvehiclesthattransportcommutersdailytoCountyWis30,000,whatistheapproximateaveragenumberofvehiclesthattransportcommutersdailytoCountyZ?CORPORATECORPORATESUPPORTFORTHEARTSBYSECTORIN1988ANDTOTALFOR1988:$630MILLIONTOTALFOR1991:Thetwocorporatesectorsthatincreasedtheirsupportfortheartsfrom1988to1991madeatotalcontributionin1991ofapproximayhowmanymilliondollars?Howmanyofthesixcorporatesectorslistedeachcontributedmorethan$60milliontotheartsinboth1988and1991? Approximayhowmanymilliondollarsmoredidthewholesalesectorcontributetotheartsin1988thanin1991?From1988to1991,whichcorporatesectordecreaseditssupportfortheartsbythegreatestdollarOftheretailsector’s1991contributiontothearts,?wenttosymphonyorchestrasand?oftheremainderwenttopublicevision.Approximayhowmanymilliondollarsmoredidtheretailsectorcontributetopublicevisionthatyearthantosymphonyorchestras?A. B. D. E.Acertainbookstoresellsonlypaperbacksandhardbacks.Eachofthe200paperbacksinstocksellsforapricebetween$8and$12,andeachofthe100hardbacksinstocksellsforapricebetween$14and$18.ty tyTheaveragepriceofthebooksin stockatthebookstoreInthefollowingfigure,thecircleisinscribedasquarethathasareaty tyTheareaoftheshaded IntriangleABC,AB=12,AC=10,andBC=ty tyThemeasureofangle ThemeasureofangleIf52/xisapositiveinteger,howmanyintegervaluesarepossiblefor5678 <,whatisthevalueofpositiveintegern? IfMisthesumoffirst31positivemultiplesof3andifNisthesumoffirst31positivemultiplesof5,M+Nisdivisiblebywhichoffollowing?A.B.C.D.E.Inthefigureabove,Aisthepointoftangencyfortwocirclesandalsothecenterofthethirdcircle.Iftheradiiofthreecirclesare1,thatistheexternalperimeterofthefigure?x?2 4?Whatistheofx?2 4?--3,[2,[3,Ifallthreesidesofarighttriangleare,respectively,radiiofthreesemicircles,whichoffollowingstatementsissufficienttodeterminethesumofareaofthreea2+b2+c2=Thesquareofhypotenuseis25TherighttriangleisisoscelesThegraphrepresentsthenormallydistributedscoresonatest.Theshadedarearepresentsapproximay68%ofthescoresty tyThe TheboxplotshowncouldbearepresentationofwhichoftheAdatasetwitharangeof100,symmetricallydistributedarounditsAdatasetwitharangeof10andanIQRofAdatasetinwhichthemedianoftheupperhalfofthedataisclosertothelowestvalueinthesetthantothehighestvalue.AsetofconsecutiveAnormal ywhatpercentofthesurveyedhouseholdshavemorethanthreeWhatisthemediannumberofpetsownedbythehouseholdsintheA.B.C.D.E.Grouhouseholdsbynumberofpets,whatistherangeofmonthlyspendingonpetsforthegroupwiththelargestrange?HouseholdswithhowmanypetshavethegreatestaveragemonthlyspendingperA.B.C.D.E.ty tya+d–c– 90–e–b–Amanwalkstohishomeformhiscurrentlocationontherectangulargridshown.Ifhemaychoosetowalknorthoreastatanycorner,butmaynevermovessouthorwest,howmanydifferentpathscanthemantaketogethome?Eachof100ballshasanintegervaluefrom1to8,inclusive,paintedontheside.Thenumbernxofballsrepresentingintegerxisgivenbytheformulanx=18–(x–4)2.Theinterquartilerangeofthe100integersisWhenxisdividedby13theanswerisywitharemainderof3.Whenxisdividedby7theansweriszwitharemainderof3.Ifx,y,andzareallpositiveintegers,whatistheremainderofyz/13?0347Inadepartmentofbiology,therearefiveprofessorsandfivestudents.Ifsevenmembersofthedepartmentarerandomlyselectedtoformacommitteeforadmi

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論