




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
直線與圓高三文科數(shù)學(xué)二輪復(fù)習(xí)考綱指導(dǎo)
1.直線方程、圓的方程、兩直線的平行與垂直、直線與圓的位置關(guān)系是本講高考的重點(diǎn);2.考查的主要內(nèi)容包括求直線(圓)的方程、點(diǎn)到直線的距離、直線與圓的位置關(guān)系判斷、簡(jiǎn)單的弦長(zhǎng)與切線問(wèn)題,多為選擇題、填空題.真題感悟答案A答案B答案4π4.(2017·天津卷)設(shè)拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l.已知點(diǎn)C在l上,以C為圓心的圓與y軸的正半軸相切于點(diǎn)A.若∠FAC=120°,則圓的方程為________.知識(shí)點(diǎn)歸納1.兩條直線平行與垂直的判定若兩條不重合的直線l1,l2的斜率k1,k2存在,則l1∥l2?k1=k2,l1⊥l2?k1k2=-1.若給出的直線方程中存在字母系數(shù),則要考慮斜率是否存在.2.兩個(gè)距離公式3.圓的方程4.直線與圓的位置關(guān)系的判定(1)幾何法:把圓心到直線的距離d和半徑r的大小加以比較:d<r?相交;d=r?相切;d>r?相離.(2)代數(shù)法:將圓的方程和直線的方程聯(lián)立起來(lái)組成方程組,利用判別式Δ來(lái)討論位置關(guān)系:Δ>0?相交;Δ=0?相切;Δ<0?相離.熱點(diǎn)一直線的方程【例1】
(1)設(shè)a∈R,則“a=-2”是直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行的(
) A.充分不必要條件
B.必要不充分條件 C.充分必要條件
D.既不充分也不必要條件 (2)(2017·山東省實(shí)驗(yàn)中學(xué)二模)過(guò)點(diǎn)P(2,3)的直線l與x軸、y軸正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則S△OAB的最小值為________.答案(1)A
(2)12探究提高1.求解兩條直線平行的問(wèn)題時(shí),在利用A1B2-A2B1=0建立方程求出參數(shù)的值后,要注意代入檢驗(yàn),排除兩條直線重合的可能性.2.求直線方程時(shí)應(yīng)根據(jù)條件選擇合適的方程形式利用待定系數(shù)法求解,同時(shí)要考慮直線斜率不存在的情況是否符合題意.【訓(xùn)練1】(1)(2017·貴陽(yáng)質(zhì)檢)已知直線l1:mx+y+1=0,l2:(m-3)x+2y-1=0,則“m=1”是“l(fā)1⊥l2”的(
) A.充分不必要條件
B.必要不充分條件 C.充要條件
D.既不充分也不必要條件 (2)已知l1,l2是分別經(jīng)過(guò)A(1,1),B(0,-1)兩點(diǎn)的兩條平行直線,當(dāng)l1,l2間的距離最大時(shí),則直線l1的方程是________.答案(1)A
(2)x+2y-3=0探究提高1.直接法求圓的方程,根據(jù)圓的幾何性質(zhì),直接求出圓心坐標(biāo)和半徑,進(jìn)而寫出方程.2.待定系數(shù)法求圓的方程:(1)若已知條件與圓心(a,b)和半徑r有關(guān),則設(shè)圓的標(biāo)準(zhǔn)方程,依據(jù)已知條件列出關(guān)于a,b,r的方程組,從而求出a,b,r的值;(2)若已知條件沒(méi)有明確給出圓心或半徑,則選擇圓的一般方程,依據(jù)已知條件列出關(guān)于D,E,F(xiàn)的方程組,進(jìn)而求出D,E,F(xiàn)的值.溫馨提醒
解答圓的方程問(wèn)題,應(yīng)注意數(shù)形結(jié)合,充分運(yùn)用圓的幾何性質(zhì).答案(1)(x-2)2+(y+3)2=5
(2)(x-2)2+(y-1)2=4.熱點(diǎn)三直線與圓的位置關(guān)系命題角度1圓的切線問(wèn)題【例3-1】
(2017·鄭州調(diào)研)在平面直角坐標(biāo)系xOy中,以點(diǎn)A(1,0)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為________.答案(x-1)2+y2=2命題角度2圓的弦長(zhǎng)相關(guān)計(jì)算【例3-2】
(2017·全國(guó)Ⅲ卷)在直角坐標(biāo)系xOy中,曲線y=x2+mx-2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問(wèn)題: (1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由; (2)證明過(guò)A,B,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.1.解決直線方程問(wèn)題應(yīng)注意:
(1)要注意幾種直線方程的局限性.點(diǎn)斜式、兩點(diǎn)式、斜截式要求直線不能與x軸垂直.而截距式方程不能表示過(guò)原點(diǎn)的直線,也不能表示垂直于坐標(biāo)軸的直線.(2)求直線方程要考慮直線斜率是否存在.(3)求解兩條直線平行的問(wèn)題時(shí),在利用A1B2-A2B1=0建立方程求出參數(shù)的值后,要注意代入檢驗(yàn),排除兩條直線重合的可能性.2.求圓的方程兩種主要方法:(1)直接法:利用圓的性質(zhì)、直線與圓、圓與圓的位置關(guān)系,數(shù)形結(jié)合直接求出圓心坐標(biāo)、半徑,進(jìn)而求出圓的方程.(2)待定系數(shù)法:先設(shè)出圓的方程,再由條件構(gòu)建系數(shù)滿足的方程(組)求得各系數(shù),進(jìn)而求出圓的方程.3.直線與圓相關(guān)問(wèn)題的兩個(gè)關(guān)鍵點(diǎn)4.直線(圓)與圓的位置關(guān)系的解題思路(1)討論直線與圓及圓與圓的位置關(guān)系時(shí),要注意數(shù)形結(jié)合,充分利用圓的幾何性質(zhì)尋找解題途徑,減少運(yùn)算量.研究直線與圓的位置關(guān)系主要通過(guò)圓心到直線的距離與半徑的比較來(lái)實(shí)現(xiàn),兩個(gè)圓的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025財(cái)務(wù)專項(xiàng)資金監(jiān)管合同
- 2025年合同法與舊合同法:新舊規(guī)定對(duì)比解析
- 2025標(biāo)準(zhǔn)的采購(gòu)合同范本示例
- 2025農(nóng)村合作銀行社團(tuán)貸款合同
- 2025年激光掃描繪圖機(jī)項(xiàng)目發(fā)展計(jì)劃
- 2025年土地流轉(zhuǎn)合同范本正式版
- 醫(yī)藥行業(yè)中醫(yī)藥現(xiàn)代化研發(fā)方案
- 中國(guó)傳統(tǒng)家具史知到課后答案智慧樹章節(jié)測(cè)試答案2025年春寧波大學(xué)
- 中國(guó)典籍外譯知到課后答案智慧樹章節(jié)測(cè)試答案2025年春山東建筑大學(xué)
- 新能源項(xiàng)目風(fēng)險(xiǎn)評(píng)估與應(yīng)對(duì)策略指南
- 信用風(fēng)險(xiǎn)度量第六章-KMV模型課件
- 小學(xué)硬筆書法課教案(1-30節(jié))
- 基于CAN通訊的儲(chǔ)能變流器并機(jī)方案及應(yīng)用分析報(bào)告-培訓(xùn)課件
- 醫(yī)院清潔消毒與滅菌課件
- 消防安裝工程施工方案Word版
- 軟管管理規(guī)定3篇
- 關(guān)于對(duì)領(lǐng)導(dǎo)班子的意見(jiàn)和建議
- 【課件】學(xué)堂樂(lè)歌 課件-2022-2023學(xué)年高中音樂(lè)人音版(2019)必修音樂(lè)鑒賞
- 納布啡在胃腸鏡麻醉中的臨床觀察-課件
- 常用手術(shù)器械手工清洗
- 2022中西醫(yī)執(zhí)業(yè)醫(yī)師實(shí)踐技能疾病對(duì)照診斷內(nèi)科
評(píng)論
0/150
提交評(píng)論