版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年黑龍江省黑河市普通高校對口單招數(shù)學(xué)自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.函數(shù)y=f(x)存在反函數(shù),若f(2)=-3,則函數(shù)y=f-1(x)的圖像經(jīng)過點(diǎn)()A.(-3,2)B.(1,3)C.(-2,2)D.(-3,3)
2.A.B.C.D.
3.A.B.C.D.
4.A.B.C.D.
5.已知向量a=(2,4),b=(-1,1),則2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)
6.已知角α的終邊經(jīng)過點(diǎn)(-4,3),則cosα()A.4/5B.3/5C.-3/5D.-4/5
7.設(shè)集合,則MS等于()A.{x|x>}
B.{x|x≥}
C.{x|x<}
D.{x|x≤}
8.設(shè)平面向量a(3,5),b(-2,1),則a-2b的坐標(biāo)是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
9.A.-1B.0C.2D.1
10.下列函數(shù)為偶函數(shù)的是A.B.C.
二、填空題(10題)11.右圖是一個算法流程圖.若輸入x的值為1/16,則輸出y的值是____.
12.
13.
14.若,則_____.
15.函數(shù)的最小正周期T=_____.
16.
17.某田徑隊(duì)有男運(yùn)動員30人,女運(yùn)動員10人.用分層抽樣的方法從中抽出一個容量為20的樣本,則抽出的女運(yùn)動員有______人.
18.5個人站在一其照相,甲、乙兩人間恰好有一個人的排法有_____種.
19.
20.
三、計(jì)算題(5題)21.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
22.某小組有6名男生與4名女生,任選3個人去參觀某展覽,求(1)3個人都是男生的概率;(2)至少有兩個男生的概率.
23.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
24.在等差數(shù)列{an}中,前n項(xiàng)和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項(xiàng)公式an.
25.己知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=6,S3=12,求公差d.
四、簡答題(10題)26.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個根,且a4>a1,求S8的值
27.某中學(xué)試驗(yàn)班有同學(xué)50名,其中女生30人,男生20人,現(xiàn)在從中選取2人取參加校際活動,求(1)選出的2人都是女生的概率。(2)選出的2人是1男1女的概率。
28.平行四邊形ABCD中,CBD沿對角線BD折起到平面CBD丄平面ABD,求證:AB丄DE。
29.拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)為橢圓的左焦點(diǎn),過點(diǎn)M(-1,-1)引拋物線的弦使M為弦的中點(diǎn),求弦長
30.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
31.求到兩定點(diǎn)A(-2,0)(1,0)的距離比等于2的點(diǎn)的軌跡方程
32.化簡
33.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.
34.數(shù)列的前n項(xiàng)和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項(xiàng)公式(2)a2+a4+a6++a2n的值
35.求k為何值時(shí),二次函數(shù)的圖像與x軸(1)有2個不同的交點(diǎn)(2)只有1個交點(diǎn)(3)沒有交點(diǎn)
五、解答題(10題)36.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,CC1的中點(diǎn).求證:(1)AC⊥BD1;(2)AE//平面BFD1.
37.已知函數(shù)f(x)=ex(ax+b)—x2—4x,曲線:y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.(1)求a,b的值;(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
38.設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).(1)若曲線y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,求a,b的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).
39.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點(diǎn)E,F(xiàn)分別是AC,AD的中點(diǎn).(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.
40.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯誤的概率。
41.
42.設(shè)橢圓x2/a2+y2/b2的方程為點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足|BM|=2|MA|直線OM的斜率為.(1)求E的離心率e(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),證明:MN丄AB
43.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的兩焦點(diǎn)分別F1,F2點(diǎn)P在橢圓C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求橢圓C的方程;(2)是否存在直線L與橢圓C相交于A、B兩點(diǎn),且使線段AB的中點(diǎn)恰為圓M:x2+y2+4x-2y=0的圓心,如果存在,求直線l的方程;如果不存在,請說明理由.
44.已知橢圓的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為,且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點(diǎn)A,B直線MA,MB與x軸分別交于點(diǎn)E,F(xiàn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求m的取值范圍.
45.
六、單選題(0題)46.為了了解全校240名學(xué)生的身高情況,從中抽取240名學(xué)生進(jìn)行測量,下列說法正確的是()A.總體是240B.個體是每-個學(xué)生C.樣本是40名學(xué)生D.樣本容量是40
參考答案
1.A由反函數(shù)定義可知,其圖像過點(diǎn)(-3,2).
2.A
3.A
4.A
5.A平面向量的線性計(jì)算.因?yàn)閍=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).
6.D三角函數(shù)的定義.記P(-4,3),則x=-4,y=3,r=|OP|=,故cosα=x/r=-4/5
7.A由于MS表示既屬于集合M又屬于集合的所有元素的集合,因此MS=。
8.A由題可知,a-2b=(3,5)-2(-2,1)=(7,3)。
9.D
10.A
11.-2算法流程圖的運(yùn)算.初始值x=1/16不滿足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.
12.-1/2
13.
14.27
15.
,由題可知,所以周期T=
16.33
17.5分層抽樣方法.因?yàn)槟羞\(yùn)動員30人,女運(yùn)動員10人,所以抽出的女運(yùn)動員有10f(10+30)×20=1/4×20=5人.
18.36,
19.{-1,0,1,2}
20.-3由于cos(x+π/6)的最小值為-1,所以函數(shù)f(x)的最小值為-3.
21.
22.
23.
24.解:設(shè)首項(xiàng)為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
25.
26.方程的兩個根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
27.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
選出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
28.
29.
30.由已知得:由上可解得
31.
32.sinα
33.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵
∴
若時(shí)
故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)
34.
35.∵△(1)當(dāng)△>0時(shí),又兩個不同交點(diǎn)(2)當(dāng)A=0時(shí),只有一個交點(diǎn)(3)當(dāng)△<0時(shí),沒有交點(diǎn)
36.(1)連接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因?yàn)锽D1包含于平面BDD1→AC⊥BD1.(2)連接EF,因?yàn)镋,F(xiàn)分別為DD1,CC1的中點(diǎn),所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四邊形EFBA是平行四邊形,所以AE//BF,又因?yàn)锳E不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1
37.
38.(1)f(x)=3x2-3a,∵曲線:y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,
39.
40.
41.
42.
43.
44.(1)設(shè)橢圓的方程為x2/a2+y2/b2=1因?yàn)閑=,所以a2=4b2,又因?yàn)闄E圓過點(diǎn)M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故橢圓標(biāo)準(zhǔn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年地理煤公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年全球梨泥行業(yè)銷售策略及競爭狀況分析報(bào)告
- 2024-2030年全球及中國谷氨酸類溫和表面活性劑行業(yè)運(yùn)營態(tài)勢及未來前景規(guī)劃報(bào)告
- 2024-2030年全球及中國浸液冷卻液行業(yè)競爭策略及需求前景預(yù)測報(bào)告
- 2024-2030年全球及中國棕櫚酰谷胺酸鈉行業(yè)需求態(tài)勢及發(fā)展趨勢預(yù)測報(bào)告
- 2024-2030年全球及中國抗震支撐系統(tǒng)行業(yè)發(fā)展方向及投資前景預(yù)測報(bào)告
- 2024-2030年全球及中國導(dǎo)電軌行業(yè)前景展望及供需趨勢預(yù)測報(bào)告
- 2024-2030年全球及中國含氟類農(nóng)藥中間體行業(yè)發(fā)展形勢及投資前景預(yù)測報(bào)告
- 2024-2030年全球及中國低功率電纜組件行業(yè)需求狀況及未來發(fā)展趨勢預(yù)測報(bào)告
- 2024-2030年互聯(lián)網(wǎng)對中國花卉銷售策略及營銷趨勢預(yù)測報(bào)告
- 護(hù)理脊柱外科出科
- 2024江蘇鹽城港控股集團(tuán)限公司招聘23人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年陜西省初中學(xué)業(yè)水平考試·數(shù)學(xué)
- 2024年三支一扶考試基本能力測驗(yàn)試題及解答參考
- 快遞員合同協(xié)議書格式
- 企業(yè)三年規(guī)劃方案
- 2024屆高考英語詞匯3500左右
- 天津市2023-2024學(xué)年高一上學(xué)期語文期末考試試卷(含答案)3
- 旅游產(chǎn)品及開發(fā)
- 2024-2030年國內(nèi)環(huán)保垃圾桶行業(yè)市場發(fā)展分析及發(fā)展前景與投資機(jī)會研究報(bào)告
- 2023-2024學(xué)年云南省昆明市呈貢區(qū)九年級(上)期末物理試卷
評論
0/150
提交評論