吉林省長春市名校調(diào)研重點名校2023年中考押題數(shù)學預(yù)測卷含解析_第1頁
吉林省長春市名校調(diào)研重點名校2023年中考押題數(shù)學預(yù)測卷含解析_第2頁
吉林省長春市名校調(diào)研重點名校2023年中考押題數(shù)學預(yù)測卷含解析_第3頁
吉林省長春市名校調(diào)研重點名校2023年中考押題數(shù)學預(yù)測卷含解析_第4頁
吉林省長春市名校調(diào)研重點名校2023年中考押題數(shù)學預(yù)測卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,點E是正方形ABCD內(nèi)一點,把△BEC繞點C旋轉(zhuǎn)至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°2.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.3.如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=2x上,第二象限的點B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.224.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.45.下列4個點,不在反比例函數(shù)圖象上的是()A.(2,-3) B.(-3,2) C.(3,-2) D.(3,2)6.已知x+=3,則x2+=()A.7 B.9 C.11 D.87.如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.48.已知拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,1),其部分圖象如圖所示,下列結(jié)論:①拋物線過原點;②a﹣b+c<1;③當x<1時,y隨x增大而增大;④拋物線的頂點坐標為(2,b);⑤若ax2+bx+c=b,則b2﹣4ac=1.其中正確的是()A.①②③ B.①④⑤ C.①②④ D.③④⑤9.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=610.若關(guān)于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點A′的坐標是_____.12.如圖,矩形ABCD中,如果以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,那么的值等于________.(結(jié)果保留兩位小數(shù))13.分解因式:4a2-4a+1=______.14.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構(gòu)成一個軸對稱圖形,現(xiàn)在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是_____.15.如圖,在等腰中,,點在以斜邊為直徑的半圓上,為的中點.當點沿半圓從點運動至點時,點運動的路徑長是________.16.小華到商場購買賀卡,他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡若小華先買了3張3D立體賀卡,則剩下的錢恰好還能買______張普通賀卡.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中的值從不等式組的整數(shù)解中選取.18.(8分)某校數(shù)學綜合實踐小組的同學以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如下圖所示:本次調(diào)查人數(shù)共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?19.(8分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.20.(8分)如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設(shè)定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結(jié)果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)21.(8分)某校團委為研究該校學生的課余活動情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、其他等四個方面調(diào)查了若干名學生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列各題:(1)在這次研究中,一共調(diào)查了多少名學生?(2)“其他”在扇形統(tǒng)計圖中所占的圓心角是多少度?(3)補全頻數(shù)分布直方圖;(4)該校共有3200名學生,請你估計一下全校大約有多少學生課余愛好是閱讀.22.(10分)關(guān)于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個不相等的實數(shù)根;(2)寫出一個m的值,并求出此時方程的根.23.(12分)已知,,,斜邊,將繞點順時針旋轉(zhuǎn),如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發(fā),在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設(shè)運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?24.某中學采用隨機的方式對學生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關(guān)信息解答:(1)接受測評的學生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應(yīng)扇形的圓心角為________°,并補全條形統(tǒng)計圖;(2)若該校共有學生1200人,請估計該校對安全知識達到“良”程度的人數(shù);(3)測評成績前五名的學生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)正方形的每一個角都是直角可得∠BCD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉(zhuǎn)至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點睛】本題目是一道考查旋轉(zhuǎn)的性質(zhì)問題——每對對應(yīng)點到旋轉(zhuǎn)中心的連線的夾角都等于旋轉(zhuǎn)角度,每對對應(yīng)邊相等,故為等腰直角三角形.2、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設(shè)CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.3、C【解析】試題分析:作AC⊥x軸于點C,作BD⊥x軸于點D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點:1.相似三角形的判定與性質(zhì);2.反比例函數(shù)圖象上點的坐標特征.4、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質(zhì)以及二次函數(shù)最值等知識,正確得出A點坐標是解題關(guān)鍵.5、D【解析】分析:根據(jù)得k=xy=-6,所以只要點的橫坐標與縱坐標的積等于-6,就在函數(shù)圖象上.解答:解:原式可化為:xy=-6,A、2×(-3)=-6,符合條件;B、(-3)×2=-6,符合條件;C、3×(-2)=-6,符合條件;D、3×2=6,不符合條件.故選D.6、A【解析】

根據(jù)完全平方公式即可求出答案.【詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【點睛】本題考查完全平方公式,解題的關(guān)鍵是熟練運用完全平方公式.7、C【解析】

本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴.解得:k=1.故選C.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學們應(yīng)高度關(guān)注.8、B【解析】

由拋物線的對稱軸結(jié)合拋物線與x軸的一個交點坐標,可求出另一交點坐標,結(jié)論①正確;當x=﹣1時,y>1,得到a﹣b+c>1,結(jié)論②錯誤;根據(jù)拋物線的對稱性得到結(jié)論③錯誤;將x=2代入二次函數(shù)解析式中結(jié)合4a+b+c=1,即可求出拋物線的頂點坐標,結(jié)論④正確;根據(jù)拋物線的頂點坐標為(2,b),判斷⑤.【詳解】解:①∵拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,與x軸的一個交點坐標為(4,1),∴拋物線與x軸的另一交點坐標為(1,1),∴拋物線過原點,結(jié)論①正確;②∵當x=﹣1時,y>1,∴a﹣b+c>1,結(jié)論②錯誤;③當x<1時,y隨x增大而減小,③錯誤;④拋物線y=ax2+bx+c(a≠1)的對稱軸為直線x=2,且拋物線過原點,∴c=1,∴b=﹣4a,c=1,∴4a+b+c=1,當x=2時,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴拋物線的頂點坐標為(2,b),結(jié)論④正確;⑤∵拋物線的頂點坐標為(2,b),∴ax2+bx+c=b時,b2﹣4ac=1,⑤正確;綜上所述,正確的結(jié)論有:①④⑤.故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.9、D【解析】

本題應(yīng)對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據(jù)“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點靈活選用合適的方法.本題運用的是因式分解法.10、B【解析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關(guān)于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、(0,0)【解析】

根據(jù)坐標的平移規(guī)律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應(yīng)的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).【點睛】此題主要考查坐標與圖形變化-平移.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.12、3.1【解析】分析:由題意可知:BC的長就是⊙O的周長,列式即可得出結(jié)論.詳解:∵以AB為直徑的⊙O沿著滾動一周,點恰好與點C重合,∴BC的長就是⊙O的周長,∴π?AB=BC,∴=π≈3.1.故答案為3.1.點睛:本題考查了圓的周長以及線段的比.解題的關(guān)鍵是弄懂BC的長就是⊙O的周長.13、【解析】

根據(jù)完全平方公式的特點:兩項平方項的符號相同,另一項是兩底數(shù)積的2倍,本題可用完全平方公式分解因式.【詳解】解:.故答案為.【點睛】本題考查用完全平方公式法進行因式分解,能用完全平方公式法進行因式分解的式子的特點需熟練掌握.14、【解析】如圖,有5種不同取法;故概率為.15、π【解析】

取的中點,取的中點,連接,,,則,故的軌跡為以為圓心,為半徑的半圓弧,根據(jù)弧長公式即可得軌跡長.【詳解】解:如圖,取的中點,取的中點,連接,,,∵在等腰中,,點在以斜邊為直徑的半圓上,∴,∵為的中位線,∴,∴當點沿半圓從點運動至點時,點的軌跡為以為圓心,為半徑的半圓弧,∴弧長,故答案為:.【點睛】本題考查了點的軌跡與等腰三角形的性質(zhì).解決動點問題的關(guān)鍵是在運動中,把握不變的等量關(guān)系(或函數(shù)關(guān)系),通過固定的等量關(guān)系(或函數(shù)關(guān)系),解決動點的軌跡或坐標問題.16、1【解析】

根據(jù)已知他身上帶的錢恰好能買5張3D立體賀卡或20張普通賀卡得:1張3D立體賀卡的單價是1張普通賀卡單價的4倍,所以設(shè)1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡,根據(jù)3張3D立體賀卡張普通賀卡張3D立體賀卡,可得結(jié)論.【詳解】解:設(shè)1張3D立體賀卡x元,剩下的錢恰好還能買y張普通賀卡.

則1張普通賀卡為:元,

由題意得:,

答:剩下的錢恰好還能買1張普通賀卡.

故答案為:1.【點睛】本題考查了一元一次方程的應(yīng)用以及列代數(shù)式,解題的關(guān)鍵是:根據(jù)總價單價數(shù)量列式計算.三、解答題(共8題,共72分)17、-2.【解析】試題分析:先算括號里面的,再算除法,解不等式組,求出x的取值范圍,選出合適的x的值代入求值即可.試題解析:原式===解得-1≤x<,∴不等式組的整數(shù)解為-1,0,1,2若分式有意義,只能取x=2,∴原式=-=-2【點睛】本題考查的是分式的化簡求值,分式中的一些特殊求值題并非是一味的化簡,代入,求值.許多問題還需運用到常見的數(shù)學思想,如化歸思想(即轉(zhuǎn)化)、整體思想等,了解這些數(shù)學解題思想對于解題技巧的豐富與提高有一定幫助.18、(1)200,90(2)圖形見解析(3)750人【解析】試題分析:(1)用對于共享單車不了解的人數(shù)20除以對于共享單車不了解的人數(shù)所占得百分比即可得本次調(diào)查人數(shù);用總?cè)藬?shù)乘以使用過共享單車人數(shù)所占的百分比即可得使用過共享單車的人數(shù);(2)用使用過共享單車的總?cè)藬?shù)減去0~2,4~6,6~8的人數(shù),即可得2~4的人數(shù),再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數(shù)所占的百分比即可得每天的騎行路程在2~4千米的人數(shù).試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形統(tǒng)計圖(3)=750(人)答:每天的騎行路程在2~4千米的大約750人19、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設(shè)D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設(shè)P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行合理變形,解決相似三角形問題時要注意分類討論.20、(1);(2)95m.【解析】

(1)過點M作MD⊥AB于點D,易求AD的長,再由BD=MD可得BD的長,即M到AB的距離;

(2)過點N作NE⊥AB于點E,易證四邊形MDEN為平行四邊形,所以ME的長可求出,再根據(jù)MN=AB-AD-BE計算即可.【詳解】解:(1)過點M作MD⊥AB于點D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴BD=MD=,∵AB=600m,∴AD+BD=600m,∴AD+,∴AD=(300)m,∴BD=MD=(900-300),∴點M到AB的距離(900-300).(2)過點N作NE⊥AB于點E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四邊形MDEN為平行四邊形,∴NE=MD=(900-300),MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴BEm,∴MN=AB-AD-BE.【點睛】考查了解直角三角形的應(yīng)用,通過解直角三角形能解決實際問題中的很多有關(guān)測量問題,根據(jù)題目已知特點選用適當銳角三角函數(shù)或邊角關(guān)系去解直角三角形,得到數(shù)學問題的答案,再轉(zhuǎn)化得到實際問題的答案是解題的關(guān)鍵.21、(1)總調(diào)查人數(shù)是100人;(2)在扇形統(tǒng)計圖中“其它”類的圓心角是36°;(3)補全頻數(shù)分布直方圖見解析;(4)估計一下全校課余愛好是閱讀的學生約為960人.【解析】

(1)利用參加運動的人數(shù)除以其所占的比例即可求得這次調(diào)查的總?cè)藬?shù);(2)用360°乘以“其它”類的人數(shù)所占的百分比即可求解;(3)求得“其它”類的人數(shù)、“娛樂”類的人數(shù),補全統(tǒng)計圖即可;(4)用總?cè)藬?shù)乘以課余愛好是閱讀的學生人數(shù)所占的百分比即可求解.【詳解】(1)從條形統(tǒng)計圖中得出參加運動的人數(shù)為20人,所占的比例為20%,∴總調(diào)查人數(shù)=20÷20%=100人;(2)參加娛樂的人數(shù)=100×40%=40人,從條形統(tǒng)計圖中得出參加閱讀的人數(shù)為30人,∴“其它”類的人數(shù)=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形統(tǒng)計圖中“其它”類的圓心角=360×10%=36°;(3)如圖(4)估計一下全校課余愛好是閱讀的學生約為3200×=960(人).【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖的應(yīng)用,從條形統(tǒng)計圖、扇形統(tǒng)計圖中獲取必要的信息是解決問題的關(guān)鍵.22、(1)見解析;(2)x1=1,x2=2【解析】

(1)根據(jù)根的判別式列出關(guān)于m的不等式,求解可得;(2)取m=-2,代入原方程,然后解方程即可.【詳解】解:(1)根據(jù)題意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,∵(m+2)2+4>1,∴方程總有兩個不相等的實數(shù)根;(2)當m=-2時,由原方程得:x2-4x+2=1.整理,得(x-1)(x-2)=1,解得x1=1,x2=2.【點睛】本題主要考查根的判別式與韋達定理,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關(guān)系:①當△>1時,方程有兩個不相等的兩個實數(shù)根;②當△=1時,方程有兩個相等的兩個實數(shù)根;③當△<1時,方程無實數(shù)根.23、(1)1;(2);(3)x時,y有最大值,最大值.【解析】

(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論