2023屆江蘇省江都區(qū)曹王中學初三階段性檢測試題含解析_第1頁
2023屆江蘇省江都區(qū)曹王中學初三階段性檢測試題含解析_第2頁
2023屆江蘇省江都區(qū)曹王中學初三階段性檢測試題含解析_第3頁
2023屆江蘇省江都區(qū)曹王中學初三階段性檢測試題含解析_第4頁
2023屆江蘇省江都區(qū)曹王中學初三階段性檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆江蘇省江都區(qū)曹王中學初三階段性檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在對某社會機構的調查中收集到以下數(shù)據(jù),你認為最能夠反映該機構年齡特征的統(tǒng)計量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標準差2.甲、乙兩名同學在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結果的實驗可能是()A.擲一枚正六面體的骰子,出現(xiàn)1點的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率3.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小4.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n5.如圖,不等式組的解集在數(shù)軸上表示正確的是()A. B.C. D.6.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.7.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.58.下列大學的?;請D案是軸對稱圖形的是()A. B. C. D.9.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.10.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度二、填空題(本大題共6個小題,每小題3分,共18分)11.若代數(shù)式有意義,則實數(shù)x的取值范圍是____.12.如圖,中,,則__________.13.關于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.14.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點,若點的坐標為,線段的長為8,則拋物線的對稱軸為直線________________.15.如圖,AB是半圓O的直徑,點C、D是半圓O的三等分點,若弦CD=2,則圖中陰影部分的面積為.16.點G是三角形ABC的重心,,,那么=_____.三、解答題(共8題,共72分)17.(8分)如圖所示,在中,,用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)連接AP當為多少度時,AP平分.18.(8分)某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.19.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求20.(8分)為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數(shù):.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?21.(8分)綜合與探究:如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(點A在點B的左側),與y軸交于C點.經(jīng)過點A的直線l與y軸交于點D(0,﹣).(1)求A、B兩點的坐標及直線l的表達式;(2)如圖2,直線l從圖中的位置出發(fā),以每秒1個單位的速度沿x軸的正方向運動,運動中直線l與x軸交于點E,與y軸交于點F,點A關于直線l的對稱點為A′,連接FA′、BA′,設直線l的運動時間為t(t>0)秒.探究下列問題:①請直接寫出A′的坐標(用含字母t的式子表示);②當點A′落在拋物線上時,求直線l的運動時間t的值,判斷此時四邊形A′BEF的形狀,并說明理由;(3)在(2)的條件下,探究:在直線l的運動過程中,坐標平面內是否存在點P,使得以P,A′,B,E為頂點的四邊形為矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.22.(10分)如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿與地面仍保持垂直的關系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測得米,塔高米.在某一時刻的太陽照射下,未折斷樹桿落在地面的影子長為米,且點、、、在同一條直線上,點、、也在同一條直線上.求這棵大樹沒有折斷前的高度.(結果精確到,參考數(shù)據(jù):,,).23.(12分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.24.如圖,P是半圓弧上一動點,連接PA、PB,過圓心O作交PA于點C,連接已知,設O,C兩點間的距離為xcm,B,C兩點間的距離為ycm.小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.下面是小東的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012336說明:補全表格時相關數(shù)據(jù)保留一位小數(shù)建立直角坐標系,描出以補全后的表中各對應值為坐標的點,畫出該函數(shù)的圖象;結合畫出的函數(shù)圖象,解決問題:直接寫出周長C的取值范圍是______.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進行選擇.詳解:由于14歲的人數(shù)是533人,影響該機構年齡特征,因此,最能夠反映該機構年齡特征的統(tǒng)計量是眾數(shù).故選B.點睛:本題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.2、C【解析】解:A.擲一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B.擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤.故選C.3、D【解析】

根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關鍵是掌握中位數(shù)和方差的定義.4、D【解析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.5、B【解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數(shù)軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數(shù)軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數(shù)軸上表示解集,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.6、D【解析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關,因而求一個角的函數(shù)值,可以轉化為求與它相等的其它角的三角函數(shù)值.7、B【解析】

原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關鍵.8、B【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項錯誤;

B、是軸對稱圖形,故本選項正確;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:B.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、A【解析】分析:從一條平行線上的任意一點到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據(jù)平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點睛:本題考查了平行線之間的距離,屬于基礎題,關鍵是掌握平行線之間距離的定義.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠﹣5.【解析】

根據(jù)分母不為零分式有意義,可得答案.【詳解】由題意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【點睛】本題考查了分式有意義的條件,利用分母不為零分式有意義得出不等式是解題關鍵.12、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案為17.13、1【解析】

先根據(jù)根的判別式求出c的取值范圍,然后在范圍內隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關系是解題的關鍵.14、或x=-1【解析】

由點A的坐標及AB的長度可得出點B的坐標,由拋物線的對稱性可求出拋物線的對稱軸.【詳解】∵點A的坐標為(-2,0),線段AB的長為8,∴點B的坐標為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,∴拋物線的對稱軸為直線x==2或x==-1.故答案為x=2或x=-1.【點睛】本題考查了拋物線與x軸的交點以及二次函數(shù)的性質,由拋物線與x軸的交點坐標找出拋物線的對稱軸是解題的關鍵.15、.【解析】試題分析:連結OC、OD,因為C、D是半圓O的三等分點,所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點:扇形的面積計算.16、.【解析】

根據(jù)題意畫出圖形,由,,根據(jù)三角形法則,即可求得的長,又由點G是△ABC的重心,根據(jù)重心的性質,即可求得.【詳解】如圖:BD是△ABC的中線,∵,∴=,∵,∴=﹣,∵點G是△ABC的重心,∴==﹣,故答案為:﹣.【點睛】本題考查了三角形的重心的性質:三角形的重心到三角形頂點的距離是它到對邊中點的距離的2倍,本題也考查了向量的加法及其幾何意義,是基礎題目.三、解答題(共8題,共72分)17、(1)詳見解析;(2)30°.【解析】

(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【點睛】本題考查尺規(guī)作圖,考查了垂直平分線的性質、直角三角形兩銳角互余的性質及等腰三角形的性質,線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質是解題關鍵.18、解:(1)10,50;(2)解法一(樹狀圖):從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)=;解法二(列表法):(以下過程同“解法一”)【解析】

試題分析:(1)由在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”元,“10”元,“20”元和“30”元的字樣,規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以再箱子里先后摸出兩個球(第一次摸出后不放回).即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與顧客所獲得購物券的金額不低于30元的情況,再利用概率公式求解即可求得答案.試題解析:(1)10,50;(2)解法一(樹狀圖):,從上圖可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;解法二(列表法):

0

10

20

30

0

﹣﹣

10

20

30

10

10

﹣﹣

30

40

20

20

30

﹣﹣

50

30

30

40

50

﹣﹣

從上表可以看出,共有12種可能結果,其中大于或等于30元共有8種可能結果,因此P(不低于30元)==;考點:列表法與樹狀圖法.【詳解】請在此輸入詳解!19、(1)證明見解析;(2)EH=【解析】

(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.20、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤144元;(3)銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.【解析】試題分析:(1)把x=24代入y=﹣14x+544求出銷售的件數(shù),然后求出政府承擔的成本價與出廠價之間的差價;(2)由利潤=銷售價﹣成本價,得w=(x﹣14)(﹣14x+544),把函數(shù)轉化成頂點坐標式,根據(jù)二次函數(shù)的性質求出最大利潤;(3)令﹣14x2+644x﹣5444=2,求出x的值,結合圖象求出利潤的范圍,然后設設政府每個月為他承擔的總差價為p元,根據(jù)一次函數(shù)的性質求出總差價的最小值.試題解析:(1)當x=24時,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府這個月為他承擔的總差價為644元;(2)依題意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴當x=34時,w有最大值144元.即當銷售單價定為34元時,每月可獲得最大利潤144元;(3)由題意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,拋物線開口向下,∴結合圖象可知:當24≤x≤1時,w≥2.又∵x≤25,∴當24≤x≤25時,w≥2.設政府每個月為他承擔的總差價為p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p隨x的增大而減小,∴當x=25時,p有最小值544元.即銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.考點:二次函數(shù)的應用.21、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF為菱形,見解析;(3)存在,P點坐標為(,)或(,﹣).【解析】

(1)通過解方程﹣x2+x+=0得A(?1,0),B(3,0),然后利用待定系數(shù)法確定直線l的解析式;(2)①作A′H⊥x軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對稱的性質得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根據(jù)含30度的直角三角形三邊的關系表示出A′H,EH即可得到A′的坐標;②把A′(t?1,t)代入y=?x2+x+得?(t?1)2+(t?1)+=t,解方程得到t=2,此時A′點的坐標為(2,),E(1,0),然后通過計算得到AF=BE=2,A′F∥BE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;(3)討論:當A′B⊥BE時,四邊形A′BEP為矩形,利用點A′和點B的橫坐標相同得到t?1=3,解方程求出t得到A′(3,),再利用矩形的性質可寫出對應的P點坐標;當A′B⊥EA′,如圖4,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,先確定此時A′點的坐標,然后利用點的平移確定對應P點坐標.【詳解】(1)當y=0時,﹣x2+x+=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0),設直線l的解析式為y=kx+b,把A(﹣1,0),D(0,﹣)代入得,解得,∴直線l的解析式為y=﹣x﹣;(2)①作A′H⊥x軸于H,如圖,∵OA=1,OD=,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵點A關于直線l的對稱點為A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=EA′=t,A′H=EH=t,∴OH=OE+EH=t﹣1+t=t﹣1,∴A′(t﹣1,t);②把A′(t﹣1,t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,解得t1=0(舍去),t2=2,∴當點A′落在拋物線上時,直線l的運動時間t的值為2;此時四邊形A′BEF為菱形,理由如下:當t=2時,A′點的坐標為(2,),E(1,0),∵∠OEF=60°∴OF=OE=,EF=2OE=2,∴F(0,),∴A′F∥x軸,∵A′F=BE=2,A′F∥BE,∴四邊形A′BEF為平行四邊形,而EF=BE=2,∴四邊形A′BEF為菱形;(3)存在,如圖:當A′B⊥BE時,四邊形A′BEP為矩形,則t﹣1=3,解得t=,則A′(3,),∵OE=t﹣1=,∴此時P點坐標為(,);當A′B⊥EA′,如圖,四邊形A′BPE為矩形,作A′Q⊥x軸于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴BQ=A′Q=?t=t,∴t﹣1+t=3,解得t=,此時A′(1,),E(,0),點A′向左平移個單位,向下平移個單位得到點E,則點B(3,0)向左平移個單位,向下平移個單位得到點P,則P(,﹣),綜上所述,滿足條件的P點坐標為(,)或(,﹣).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論