版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
問題一:從甲、乙、丙3名同學(xué)中選出2名去參加某天的一項(xiàng)活動(dòng),其中1名同學(xué)參加上午的活動(dòng),1名同學(xué)參加下午的活動(dòng),有多少種不同的選法?問題二:從甲、乙、丙3名同學(xué)中選出2名去參加某天的一項(xiàng)活動(dòng),有多少種不同的選法?甲、乙;甲、丙;乙、丙
3情境創(chuàng)設(shè)從已知的3個(gè)不同元素中每次取出2個(gè)元素,合成一組問題2從已知的3
個(gè)不同元素中每次取出2個(gè)元素,按照一定的順序排成一列.問題1排列組合有順序無順序
一般地,從n個(gè)不同元素中取出m(m≤n)
個(gè)元素,按照一定的順序排成一列,叫做從
n個(gè)不同元素中取出
m個(gè)元素的一個(gè)排列.排列定義:類比排列的定義,請(qǐng)你得出組合的定義。
一般地,從n個(gè)不同元素中取出m(m≤n)個(gè)元素合成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.
排列與組合的概念有什么共同點(diǎn)與不同點(diǎn)?
概念講解組合定義:組合定義:
一般地,從n個(gè)不同元素中取出m(m≤n)個(gè)元素合成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.排列定義:一般地,從n個(gè)不同元素中取出m(m≤n)
個(gè)元素,按照一定的順序排成一列,叫做從
n個(gè)不同元素中取出
m個(gè)元素的一個(gè)排列.共同點(diǎn):都要“從n個(gè)不同元素中任取m個(gè)元素”不同點(diǎn):排列與元素的順序有關(guān),而組合則與元素的順序無關(guān).概念講解思考一:ab與ba是相同的排列還是相同的組合?為什么?思考二:兩個(gè)相同的排列有什么特點(diǎn)?兩個(gè)相同的組合呢?1)元素相同;2)元素排列順序相同.元素相同概念理解判斷下列問題是組合問題還是排列問題?
(1)設(shè)集合A={a,b,c,d,e},則集合A的含有3個(gè)元素的子集有多少個(gè)?(2)某鐵路線上有5個(gè)車站,則這條鐵路線上共需準(zhǔn)備多少種車票?有多少種不同的火車票價(jià)?組合問題排列問題(3)10名同學(xué)分成人數(shù)相同的數(shù)學(xué)和英語兩個(gè)學(xué)習(xí)小組,共有多少種分法?組合問題(4)10人聚會(huì),見面后每?jī)扇酥g要握手相互問候,共需握手多少次?組合問題(5)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)游覽,有多少種不同的方法?組合問題(6)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?排列問題組合問題
甲、乙、丙、丁4支足球隊(duì)舉行單循環(huán)賽,(1)列出所有各場(chǎng)比賽的雙方;(2)列出所有冠亞軍的可能情況.(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁
乙甲、丙甲、丁甲、丙乙、丁乙、丁丙(1)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:練習(xí)2練習(xí)3已知平面內(nèi)A,B,C,D這四個(gè)點(diǎn)中任何3個(gè)點(diǎn)都不在一條直線上,寫出由其中每3點(diǎn)為頂點(diǎn)的所有三角形.解:
從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù),用符號(hào)表示.如:從a,b,c三個(gè)不同的元素中取出兩個(gè)元素的所有組合個(gè)數(shù)是:如:已知4個(gè)元素a、b、c、d,寫出每次取出兩個(gè)元素的所有組合個(gè)數(shù)是:概念講解組合數(shù):注意:是一個(gè)數(shù),應(yīng)該把它與“組合”區(qū)別開來.
前面已經(jīng)提到,組合與排列有相互關(guān)系,我們能否利用這種關(guān)系,通過排列數(shù)來求組合數(shù)呢?探究如從a,b,c,d四個(gè)元素中任取三個(gè)元素的所有組合數(shù),如何通過排列數(shù)來計(jì)算呢?1、寫出從a,b,c,d
四個(gè)元素中任取三個(gè)元素的所有組合。abc,abd,acd,bcd.bcddcbacd2、寫出從a,b,c,d
四個(gè)元素中任取三個(gè)元素的所有排列。組合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb如何計(jì)算:組合數(shù)公式
排列與組合是有區(qū)別的,但它們又有聯(lián)系.根據(jù)分步計(jì)數(shù)原理,得到:因此:
一般地,求從個(gè)不同元素中取出個(gè)元素的排列數(shù),可以分為以下2步:
第1步,先求出從這個(gè)不同元素中取出個(gè)元素的組合數(shù).
第2步,求每一個(gè)組合中個(gè)元素的全排列數(shù).
這里,且,這個(gè)公式叫做組合數(shù)公式.
概念講解組合數(shù)公式:
從n個(gè)不同元素中取出m個(gè)元素的排列數(shù)概念講解例1.計(jì)算例2.已知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東耐磨環(huán)氧地坪施工方案
- 遼寧景觀植物墻施工方案
- 陽臺(tái)花架防傾倒施工方案
- 安裝鋼軌截水篦子施工方案
- 河北公園標(biāo)識(shí)牌施工方案
- 浙江高架垂直綠化施工方案
- 2025年溴硝丙醇項(xiàng)目可行性研究報(bào)告
- 婚禮宴會(huì)廳裝修意向協(xié)議書
- 商品房混凝土澆灌施工方案
- 碼頭工程鋼筋配送服務(wù)合同
- 洞悉現(xiàn)狀 明確方向-初三上期末家長(zhǎng)會(huì)
- 質(zhì)控護(hù)理管理制度內(nèi)容
- 幼兒園幼教集團(tuán)2025學(xué)年第二學(xué)期工作計(jì)劃
- 2025版高考物理復(fù)習(xí)知識(shí)清單
- 2024年考研管理類綜合能力(199)真題及解析完整版
- 除數(shù)是兩位數(shù)的除法練習(xí)題(84道)
- 六年級(jí)下冊(cè)【默寫表】(牛津上海版、深圳版)(英譯漢)
- 2025年度安全檢查計(jì)劃
- 2024年度工作總結(jié)與計(jì)劃標(biāo)準(zhǔn)版本(2篇)
- 北京外企勞動(dòng)合同范例
- 《護(hù)患溝通》課件
評(píng)論
0/150
提交評(píng)論