浙江省紹興市上虞區(qū)2023屆高三畢業(yè)班第六次質(zhì)量檢查數(shù)學(xué)試題_第1頁
浙江省紹興市上虞區(qū)2023屆高三畢業(yè)班第六次質(zhì)量檢查數(shù)學(xué)試題_第2頁
浙江省紹興市上虞區(qū)2023屆高三畢業(yè)班第六次質(zhì)量檢查數(shù)學(xué)試題_第3頁
浙江省紹興市上虞區(qū)2023屆高三畢業(yè)班第六次質(zhì)量檢查數(shù)學(xué)試題_第4頁
浙江省紹興市上虞區(qū)2023屆高三畢業(yè)班第六次質(zhì)量檢查數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省紹興市上虞區(qū)2023屆高三畢業(yè)班第六次質(zhì)量檢查數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.602.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.3.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.54.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.5.我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.6.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.37.若函數(shù)滿足,且,則的最小值是()A. B. C. D.8.的展開式中,含項的系數(shù)為()A. B. C. D.9.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.10.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標(biāo)原點)交的右支于點,若,且,則的離心率是()A. B. C. D.11.設(shè)、,數(shù)列滿足,,,則()A.對于任意,都存在實數(shù),使得恒成立B.對于任意,都存在實數(shù),使得恒成立C.對于任意,都存在實數(shù),使得恒成立D.對于任意,都存在實數(shù),使得恒成立12.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是___.14.已知數(shù)列的前項和為,且成等差數(shù)列,,數(shù)列的前項和為,則滿足的最小正整數(shù)的值為______________.15.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.16.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關(guān)于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.18.(12分)在平面直角坐標(biāo)系中,已知橢圓的左頂點為,右焦點為,為橢圓上兩點,圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點滿足,求直線被圓截得弦長的最大值.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.20.(12分)設(shè)等比數(shù)列的前項和為,若(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在和之間插入個實數(shù),使得這個數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項和為,求證:.21.(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(nèi)(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:送餐單數(shù)3839404142甲公司天數(shù)101015105乙公司天數(shù)101510105(1)從記錄甲公司的天送餐單數(shù)中隨機抽取天,求這天的送餐單數(shù)都不小于單的概率;(2)假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數(shù)學(xué)期望;②小張打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,小張應(yīng)選擇哪家公司應(yīng)聘?說明你的理由.22.(10分)某機構(gòu)組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長對小孩的飲食習(xí)慣完全不了解.(?。┣笏麄冊谝惠営螒蛑?,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結(jié)果都滿足X<4,請判斷這位家長對小孩飲食習(xí)慣是否了解,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題2、D【解析】

因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.3、B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.4、B【解析】

先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當(dāng)輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.5、A【解析】

根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.6、A【解析】

將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.7、A【解析】

由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時,取得最小值.故選:A.【點睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計算能力,屬于中等題.8、B【解析】

在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.【點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.9、B【解析】

根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題10、D【解析】

如圖,設(shè)雙曲線的右焦點為,連接并延長交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設(shè),則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構(gòu)造關(guān)于的方程,本題屬于難題.11、D【解析】

取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項;由蛛網(wǎng)圖可知,存在兩個不動點,且,,因為當(dāng)時,數(shù)列單調(diào)遞增,則;當(dāng)時,數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數(shù)列的綜合運用,考查邏輯推理能力,屬于難題.12、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、C【解析】

假設(shè)獲得一等獎的作品,判斷四位同學(xué)說對的人數(shù).【詳解】分別獲獎的說對人數(shù)如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數(shù)3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗條件.14、1【解析】

本題先根據(jù)公式初步找到數(shù)列的通項公式,然后根據(jù)等差中項的性質(zhì)可解得的值,即可確定數(shù)列的通項公式,代入數(shù)列的表達式計算出數(shù)列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進行計算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時,.當(dāng)時,.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.【點睛】本題主要考查數(shù)列求通項公式、裂項相消法求前項和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學(xué)運算能力.15、【解析】

由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進而根據(jù)余弦定理,基本不等式可求的最大值,進而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當(dāng)且僅當(dāng)時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.16、【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)設(shè)點的坐標(biāo),表達出直線的斜率之積,再根據(jù)三點均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達式列式求解即可.(Ⅱ)設(shè)直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設(shè),,則,又,,故,即,故,又,故.故橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)設(shè)直線的方程為,,由,故,又,故,因為處的切線相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達定理有設(shè),則.當(dāng)且僅當(dāng)時取等號.故的面積的最大值為.【點睛】本題主要考查了根據(jù)橢圓上的點坐標(biāo)滿足的關(guān)系式求解橢圓基本量求方程的方法,同時也考查了拋物線的切線問題以及橢圓中面積的最值問題,需要根據(jù)導(dǎo)數(shù)的幾何意義求切線斜率,再換元利用基本不等式求解.屬于難題.18、(1)(2)【解析】試題分析:(1)確定圓的方程,就是確定半徑的值,因為直線與圓相切,所以先確定直線方程,即確定點坐標(biāo):因為軸,所以,根據(jù)對稱性,可取,則直線的方程為,根據(jù)圓心到切線距離等于半徑得(2)根據(jù)垂徑定理,求直線被圓截得弦長的最大值,就是求圓心到直線的距離的最小值.設(shè)直線的方程為,則圓心到直線的距離,利用得,化簡得,利用直線方程與橢圓方程聯(lián)立方程組并結(jié)合韋達定理得,因此,當(dāng)時,取最小值,取最大值為.試題解析:解:(1)因為橢圓的方程為,所以,.因為軸,所以,而直線與圓相切,根據(jù)對稱性,可取,則直線的方程為,即.由圓與直線相切,得,所以圓的方程為.(2)易知,圓的方程為.①當(dāng)軸時,,所以,此時得直線被圓截得的弦長為.②當(dāng)與軸不垂直時,設(shè)直線的方程為,,首先由,得,即,所以(*).聯(lián)立,消去,得,將代入(*)式,得.由于圓心到直線的距離為,所以直線被圓截得的弦長為,故當(dāng)時,有最大值為.綜上,因為,所以直線被圓截得的弦長的最大值為.考點:直線與圓位置關(guān)系19、(1)(2)【解析】

(1)將曲線的方程化成直角坐標(biāo)方程為,當(dāng)時,線段取得最小值,利用幾何法求弦長即可.(2)當(dāng)點與點不重合時,設(shè),由利用向量的數(shù)量積等于可求解,最后驗證當(dāng)點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標(biāo)方程為即圓心,半徑,曲線為過定點的直線,易知在圓內(nèi),當(dāng)時,線段長最小為當(dāng)點與點不重合時,設(shè),化簡得當(dāng)點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標(biāo)與普通方程的互化、直線與圓的位置關(guān)系、列方程求動點的軌跡方程,屬于基礎(chǔ)題.20、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ),,兩式相減化簡整理利用等比數(shù)列的通項公式即可得出.(Ⅱ)由題設(shè)可得,可得,利用錯位相減法即可得出.【詳解】解:(Ⅰ)因為,故,兩式相減可得,,故,因為是等比數(shù)列,∴,又,所以,故,所以;(Ⅱ)由題設(shè)可得,所以,所以,①則,②①-②得:,所以,得證.【點睛】本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項公式求和公式、錯位相減法,考查了推理能力與計算能力,屬于中檔題.21、(1);(2)①分布列見解析,;②小張應(yīng)選擇甲公司應(yīng)聘.【解析】

(1)記抽取的3天送餐單數(shù)都不小于40為事件,可得(A)的值.(2)①設(shè)乙公司送餐員送餐單數(shù)為,可得當(dāng)時,,以此類推可得:當(dāng)時,當(dāng)時,的值.當(dāng)時,的值,同理可得:當(dāng)時,.的所有可能取值.可得的分布列及其數(shù)學(xué)期望.②依題意,甲公司送餐員日平均送餐單數(shù).可得甲公司送餐員日平均工資,與乙數(shù)學(xué)期望比較即可得出.【詳解】解:(1)由表知,50天送餐單數(shù)中有30天的送餐單數(shù)不小于40單,記抽取的3天送餐單數(shù)都不小于40為事件,則.(2)①設(shè)乙公司送餐員的送餐單數(shù)為,日工資為元,則當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.所以的分布列為228234240247254.②依題意,甲公司送餐員的日平均送餐單數(shù)為,所以甲公司送餐員的日平均工資為元,因為,所以小張應(yīng)選擇甲公司應(yīng)聘.【點睛】本題考查了隨機變量的分布列與數(shù)學(xué)期望、古典概率計算公式、組合計算公式,考查了推理能力與計算能力,屬于中檔題.22、(1)(?。áⅲ┓植急硪娊馕?;(2)理由見解析【解析】

(1)(i)若家長對小孩子的飲食習(xí)慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論