版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
天津市七校重點中學(xué)2023屆高考學(xué)業(yè)水平數(shù)學(xué)試題模擬卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.22.集合,,則()A. B. C. D.3.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.4.函數(shù)圖像可能是()A. B. C. D.5.若雙曲線:繞其對稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或6.定義域為R的偶函數(shù)滿足任意,有,且當(dāng)時,.若函數(shù)至少有三個零點,則的取值范圍是()A. B. C. D.7.復(fù)數(shù)()A. B. C.0 D.8.某校8位學(xué)生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學(xué)生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)9.下列函數(shù)中,圖象關(guān)于軸對稱的為()A. B.,C. D.10.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.7211.已知向量,,則向量與的夾角為()A. B. C. D.12.設(shè)函數(shù)定義域為全體實數(shù),令.有以下6個論斷:①是奇函數(shù)時,是奇函數(shù);②是偶函數(shù)時,是奇函數(shù);③是偶函數(shù)時,是偶函數(shù);④是奇函數(shù)時,是偶函數(shù)⑤是偶函數(shù);⑥對任意的實數(shù),.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在和上均單調(diào)遞增,則實數(shù)的取值范圍為________.14.某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________.15.展開式中項系數(shù)為160,則的值為______.16.記等差數(shù)列和的前項和分別為和,若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.18.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最???19.(12分)一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.(1)當(dāng)取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當(dāng)時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學(xué)期望.20.(12分)在直角坐標(biāo)系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.21.(12分)已知拋物線的頂點為原點,其焦點關(guān)于直線的對稱點為,且.若點為的準(zhǔn)線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.22.(10分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請說理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時,有最大值為,即,故..當(dāng),即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.2、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.3、D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.4、D【解析】
先判斷函數(shù)的奇偶性可排除選項A,C,當(dāng)時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當(dāng)正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.5、C【解析】
由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.6、B【解析】
由題意可得的周期為,當(dāng)時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域為R的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時,,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考常考的熱點問題,屬于中檔題.7、C【解析】略8、A【解析】
通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數(shù)字特征,意在考查學(xué)生對這些知識的理解掌握水平.9、D【解析】
圖象關(guān)于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項進行判斷可解.【詳解】圖象關(guān)于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關(guān)于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(軸)對稱.10、C【解析】
由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項和公式的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】
求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標(biāo)運算,考查了數(shù)量積的坐標(biāo)表示.求向量夾角時,通常代入公式進行計算.12、A【解析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時,則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時,在和上單調(diào)遞增,在和上均單調(diào)遞增,,
,
的取值范圍為:.
故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.14、3【解析】由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為和,高為,如圖所示,平面,所以底面積為,幾何體的高為,所以其體積為.點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進行綜合考慮.求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解.15、-2【解析】
表示該二項式的展開式的第r+1項,令其指數(shù)為3,再代回原表達式構(gòu)建方程求得答案.【詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:【點睛】本題考查由二項式指定項的系數(shù)求參數(shù),屬于簡單題.16、【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時取最大值.故的最大值為.【點睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題18、(1);(2)當(dāng)BP為cm時,α+β取得最小值.【解析】
(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,根據(jù)得到,解得答案.(2)設(shè)BP=t,則,故,設(shè),求導(dǎo)得到函數(shù)單調(diào)性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設(shè)BC=x,則,化簡得,解之得,或(舍),(2)設(shè)BP=t,則,,設(shè),,令f'(t)=0,因為,得,當(dāng)時,f'(t)<0,f(t)是減函數(shù);當(dāng)時,f'(t)>0,f(t)是增函數(shù),所以,當(dāng)時,f(t)取得最小值,即tan(α+β)取得最小值,因為恒成立,所以f(t)<0,所以tan(α+β)<0,,因為y=tanx在上是增函數(shù),所以當(dāng)時,α+β取得最小值.【點睛】本題考查了三角恒等變換,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和應(yīng)用能力.19、(1)當(dāng)或時,有3個坑要補播種的概率最大,最大概率為;(2)見解析.【解析】
(1)將有3個坑需要補種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時有3個坑要補播種的概率最大.(2)n=1時,X的所有可能的取值為0,1,2,3,1.分別計算出每個變量對應(yīng)的概率,列出分布列,求期望即可.【詳解】(1)對一個坑而言,要補播種的概率,有3個坑要補播種的概率為.欲使最大,只需,解得,因為,所以當(dāng)時,;當(dāng)時,;所以當(dāng)或時,有3個坑要補播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學(xué)期望.【點睛】本題考查了古典概型的概率求法,離散型隨機變量的概率分布,二項分布,主要考查簡單的計算,屬于中檔題.20、(1)(2)存在;常數(shù),定值【解析】
(1)設(shè)出的坐標(biāo),利用以及,求得曲線的方程.(2)當(dāng)直線的斜率存在時,設(shè)出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關(guān)系,結(jié)合以及為定值,求得的值.當(dāng)直線的斜率不存在時,驗證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設(shè),,由題可得,解得又,即,消去得:(2)當(dāng)直線的斜率存在時,設(shè)直線的方程為設(shè),由可得:由點到的距離為定值可得(為常數(shù))即得:即,又為定值時,,此時,且符合當(dāng)直線的斜率不存在時,設(shè)直線方程為由題可得,時,,經(jīng)檢驗,符合條件綜上可知,存在常數(shù),且定值【點睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關(guān)系,考查運算求解能力,考查橢圓中的定值問題,屬于難題.21、(1)(2)見解析,最小值為4【解析】
(1)根據(jù)焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設(shè)出的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年浙科版七年級化學(xué)上冊月考試卷
- 2024環(huán)保節(jié)能項目投資與合作合同
- 2025年蘇科新版四年級數(shù)學(xué)上冊階段測試試卷
- 2025年度物業(yè)委托管理及社區(qū)文化活動組織合同3篇
- 家居色彩搭配與裝修風(fēng)格解析
- 2024生物醫(yī)藥研發(fā)項目委托合同
- 2024版購房退款協(xié)議詳解3篇
- 2024年虛擬現(xiàn)實娛樂項目開發(fā)合同
- 小學(xué)數(shù)學(xué)教師如何利用科技提升教學(xué)質(zhì)量
- 2024投票權(quán)委托與公司決策效率合同范本3篇
- 2025年湖南湘西州農(nóng)商銀行招聘筆試參考題庫含答案解析
- (完整)領(lǐng)導(dǎo)干部任前廉政法規(guī)知識考試題庫(含答案)
- 2025年國務(wù)院發(fā)展研究中心信息中心招聘2人高頻重點提升(共500題)附帶答案詳解
- 人工智能算法模型定制開發(fā)合同
- 【MOOC期末】《形勢與政策》(北京科技大學(xué))期末慕課答案
- 2024年醫(yī)療健康知識科普視頻制作合同3篇
- 2024年古董古玩買賣協(xié)議6篇
- QC/T 1209-2024汽車噪聲與振動(NVH)術(shù)語和定義
- 安全風(fēng)險隱患舉報獎勵制度
- 江蘇省蘇州市2023-2024學(xué)年高三上學(xué)期期末考試 數(shù)學(xué) 含答案
- 教學(xué)成果獎培育工作方案
評論
0/150
提交評論