下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
高一數(shù)學函數(shù)知識點
(一)、映射、函數(shù)、反函數(shù)
1、對應、映射、函數(shù)三個概念既有共性又有區(qū)分,映射是一種特別的對應,而函數(shù)又是一種特別的映射.
2、對于函數(shù)的概念,應留意如下幾點:
(1)把握構成函數(shù)的三要素,會推斷兩個函數(shù)是否為同一函數(shù).
(2)把握三種表示法列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關系式,特殊是會求分段函數(shù)的解析式.
(3)假如y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數(shù),其中g(x)為內函數(shù),f(u)為外函數(shù).
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f-1(x),并注明定義域.
留意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.
②熟識的應用,求f-1(x0)的值,合理利用這個結論,可以避開求反函數(shù)的過程,從而簡化運算.
(二)、函數(shù)的解析式與定義域
1、函數(shù)及其定義域是不行分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必需是在求出變量間的對應法則的同時,求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:
(1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;
(2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開方數(shù)不小于零;
③對數(shù)函數(shù)的真數(shù)必需大于零;
④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必需大于零且不等于1;
⑤三角函數(shù)中的正切函數(shù)y=tanx(xR,且kZ),余切函數(shù)y=cotx(xR,x,kZ)等.
應留意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).
(3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿意ab的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x[a,b],此時f(x)的定義域,即g(x)的值域.
2、求函數(shù)的解析式一般有四種狀況
(1)依據(jù)某實際問題需建立一種函數(shù)關系時,必需引入合適的變量,依據(jù)數(shù)學的有關學問尋求函數(shù)的解析式.
(2)有時題設給出函數(shù)特征,求函數(shù)的解析式,可采納待定系數(shù)法.比如函數(shù)是一次函數(shù),可設f(x)=ax+b(a0),其中a,b為待定系數(shù),依據(jù)題設條件,列出方程組,求出a,b即可.
(3)若題設給出復合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必需求出g(x)的值域,這相當于求函數(shù)的定義域.
(4)若已知f(x)滿意某個等式,這個等式除f(x)是未知量外,還消失其他未知量(如f(-x),等),必需依據(jù)已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.
(三)、函數(shù)的值域與最值
1、函數(shù)的值域取決于定義域和對應法則,不論采納何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀看法,對于結構較為簡潔的函數(shù),可由函數(shù)的解析式應用不等式的性質,直接觀看得出函數(shù)的值域.
(2)換元法:運用代數(shù)式或三角換元將所給的簡單函數(shù)轉化成另一種簡潔函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a0)的函數(shù)值域可采納此法求得.
(4)配方法:對于二次函數(shù)或二次函數(shù)有關的函數(shù)的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b[a,b(0,+)]可以求某些函數(shù)的值域,不過應留意條件一正二定三相等有時需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用△求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數(shù)的單調性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的'單調性,可采納單調性法求出函數(shù)的值域.
(8)數(shù)形結合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結合求函數(shù)的值域.
2、求函數(shù)的最值與值域的區(qū)分和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,假如在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.
如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-,-2][2,+),但此函數(shù)無最大值和最小值,只有在轉變函數(shù)定義域后,如x0時,函數(shù)的最小值為2.可見定義域對函數(shù)的值域或最值的影響.
3、函數(shù)的最值在實際問題中的應用
函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)學問求解實際問題上,從文字表述上經常表現(xiàn)為工程造價最低,利潤最大或面積(體積)最大(最小)等諸多現(xiàn)實問題上,求解時要特殊關注實際意義對自變量的制約,以便能正確求得最值.
(四)、函數(shù)的奇偶性
1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),假如對于函數(shù)定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).
正確理解奇函數(shù)和偶函數(shù)的定義,要留意兩點:(1)定義域在數(shù)軸上關于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質).
2、奇偶函數(shù)的定義是推斷函數(shù)奇偶性的主要依據(jù)。為了便于推斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應用定義的等價形式:
留意如下結論的運用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1D2上,f(x)+g(x)是奇函數(shù),f(x)g(x)是偶函數(shù),類似地有奇奇=奇奇奇=偶,偶偶=偶偶偶=偶奇偶=奇
(3)奇偶函數(shù)的復合函數(shù)的奇偶性通常是偶函數(shù);
(4)奇函數(shù)的導函數(shù)是偶函數(shù),偶函數(shù)的導函數(shù)是奇函數(shù)。
3、有關奇偶性的幾共性質及結論
(1)一個函數(shù)為奇函數(shù)的充要條件是它的圖象關于原點對稱;一個函數(shù)為偶函數(shù)的充要條件是它的圖象關于y軸對稱.
(2)如要函數(shù)的定義域關于原點對稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).
(3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區(qū)間單調函數(shù),則奇(偶)函數(shù)在正負對稱區(qū)間上的單調性是相同(反)的。
(5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).
(6)奇偶性的推廣
函數(shù)y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數(shù).
常見考法
本節(jié)是段考和高考必不行少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調性、最值和圖象等。
誤區(qū)提示
1、求函數(shù)的單調區(qū)間,必需先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調區(qū)間必需用區(qū)間來表示,不能用集合或不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感恩老師發(fā)言稿14篇
- 安全主題教育活動方案
- 汽車租賃服務投標方案(技術標)
- 連云港做實“一帶一路交匯點”建設的對策思考
- 公司財務知識分享
- 基于生物信息學探索妊娠期糖尿病與尿苷代謝相關的關鍵基因
- 《駱駝祥子》 上課課件
- 二零二五版企業(yè)向個人發(fā)放汽車貸款合同示例3篇
- 科創(chuàng)孵化器項目融資報告
- 建立強大的醫(yī)院管理團隊
- 2024-2025學年人教版三年級(上)英語寒假作業(yè)(九)
- 《招標投標法》考試題庫200題(含答案)
- 人教版2024新版七年級上冊數(shù)學第六章幾何圖形初步學業(yè)質量測試卷(含答案)
- 小學數(shù)學五年級上冊奧數(shù)應用題100道(含答案)
- 2023年漢中市人民政府國有資產監(jiān)督管理委員會公務員考試《行政職業(yè)能力測驗》歷年真題及詳解
- 《樹立正確的“三觀”》班會課件
- 招聘專員轉正述職報告
- 大學生文學常識知識競賽考試題庫500題(含答案)
- 太原頭腦外賣營銷方案
- JBT 7041.1-2023 液壓泵 第1部分:葉片泵 (正式版)
- 7天減肥餐食譜給你最能瘦的一周減肥食譜
評論
0/150
提交評論